Cargando…
Dielectric control of reverse intersystem crossing in thermally activated delayed fluorescence emitters
Thermally-activated delayed fluorescence (TADF) enables organic semiconductors with charge transfer (CT)-type excitons to convert dark triplet states into bright singlets via reverse intersystem crossing (rISC). However, thus far the contribution from the dielectric environment has received insuffic...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7613666/ https://www.ncbi.nlm.nih.gov/pubmed/35927434 http://dx.doi.org/10.1038/s41563-022-01321-2 |
_version_ | 1783605507110469632 |
---|---|
author | Gillett, Alexander J. Pershin, Anton Pandya, Raj Feldmann, Sascha Sneyd, Alexander J. Alvertis, Antonios M. Evans, Emrys W. Thomas, Tudor H. Cui, Lin-Song Drummond, Bluebell H. Scholes, Gregory D. Olivier, Yoann Rao, Akshay Friend, Richard H. Beljonne, David |
author_facet | Gillett, Alexander J. Pershin, Anton Pandya, Raj Feldmann, Sascha Sneyd, Alexander J. Alvertis, Antonios M. Evans, Emrys W. Thomas, Tudor H. Cui, Lin-Song Drummond, Bluebell H. Scholes, Gregory D. Olivier, Yoann Rao, Akshay Friend, Richard H. Beljonne, David |
author_sort | Gillett, Alexander J. |
collection | PubMed |
description | Thermally-activated delayed fluorescence (TADF) enables organic semiconductors with charge transfer (CT)-type excitons to convert dark triplet states into bright singlets via reverse intersystem crossing (rISC). However, thus far the contribution from the dielectric environment has received insufficient attention. Here, we study the role of the dielectric environment in a range of TADF materials with varying changes in dipole moment upon optical excitation. In dipolar emitters, we observe how environmental reorganisation after excitation triggers the full CT exciton formation, minimising the singlet-triplet energy gap, with the emergence of two (reactant-inactive) modes acting as a vibrational fingerprint of the CT product. In contrast, the dielectric environment plays a smaller role in less dipolar materials. The analysis of energy-time trajectories and their free-energy functions reveal that the dielectric environment significantly reduces the activation energy for rISC in dipolar TADF emitters, increasing the rISC rate by three orders of magnitude versus the isolated molecule. |
format | Online Article Text |
id | pubmed-7613666 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
record_format | MEDLINE/PubMed |
spelling | pubmed-76136662023-02-04 Dielectric control of reverse intersystem crossing in thermally activated delayed fluorescence emitters Gillett, Alexander J. Pershin, Anton Pandya, Raj Feldmann, Sascha Sneyd, Alexander J. Alvertis, Antonios M. Evans, Emrys W. Thomas, Tudor H. Cui, Lin-Song Drummond, Bluebell H. Scholes, Gregory D. Olivier, Yoann Rao, Akshay Friend, Richard H. Beljonne, David Nat Mater Article Thermally-activated delayed fluorescence (TADF) enables organic semiconductors with charge transfer (CT)-type excitons to convert dark triplet states into bright singlets via reverse intersystem crossing (rISC). However, thus far the contribution from the dielectric environment has received insufficient attention. Here, we study the role of the dielectric environment in a range of TADF materials with varying changes in dipole moment upon optical excitation. In dipolar emitters, we observe how environmental reorganisation after excitation triggers the full CT exciton formation, minimising the singlet-triplet energy gap, with the emergence of two (reactant-inactive) modes acting as a vibrational fingerprint of the CT product. In contrast, the dielectric environment plays a smaller role in less dipolar materials. The analysis of energy-time trajectories and their free-energy functions reveal that the dielectric environment significantly reduces the activation energy for rISC in dipolar TADF emitters, increasing the rISC rate by three orders of magnitude versus the isolated molecule. 2022-10 2022-08-04 /pmc/articles/PMC7613666/ /pubmed/35927434 http://dx.doi.org/10.1038/s41563-022-01321-2 Text en https://www.springernature.com/gp/open-research/policies/accepted-manuscript-termsUsers may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms |
spellingShingle | Article Gillett, Alexander J. Pershin, Anton Pandya, Raj Feldmann, Sascha Sneyd, Alexander J. Alvertis, Antonios M. Evans, Emrys W. Thomas, Tudor H. Cui, Lin-Song Drummond, Bluebell H. Scholes, Gregory D. Olivier, Yoann Rao, Akshay Friend, Richard H. Beljonne, David Dielectric control of reverse intersystem crossing in thermally activated delayed fluorescence emitters |
title | Dielectric control of reverse intersystem crossing in thermally activated delayed fluorescence emitters |
title_full | Dielectric control of reverse intersystem crossing in thermally activated delayed fluorescence emitters |
title_fullStr | Dielectric control of reverse intersystem crossing in thermally activated delayed fluorescence emitters |
title_full_unstemmed | Dielectric control of reverse intersystem crossing in thermally activated delayed fluorescence emitters |
title_short | Dielectric control of reverse intersystem crossing in thermally activated delayed fluorescence emitters |
title_sort | dielectric control of reverse intersystem crossing in thermally activated delayed fluorescence emitters |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7613666/ https://www.ncbi.nlm.nih.gov/pubmed/35927434 http://dx.doi.org/10.1038/s41563-022-01321-2 |
work_keys_str_mv | AT gillettalexanderj dielectriccontrolofreverseintersystemcrossinginthermallyactivateddelayedfluorescenceemitters AT pershinanton dielectriccontrolofreverseintersystemcrossinginthermallyactivateddelayedfluorescenceemitters AT pandyaraj dielectriccontrolofreverseintersystemcrossinginthermallyactivateddelayedfluorescenceemitters AT feldmannsascha dielectriccontrolofreverseintersystemcrossinginthermallyactivateddelayedfluorescenceemitters AT sneydalexanderj dielectriccontrolofreverseintersystemcrossinginthermallyactivateddelayedfluorescenceemitters AT alvertisantoniosm dielectriccontrolofreverseintersystemcrossinginthermallyactivateddelayedfluorescenceemitters AT evansemrysw dielectriccontrolofreverseintersystemcrossinginthermallyactivateddelayedfluorescenceemitters AT thomastudorh dielectriccontrolofreverseintersystemcrossinginthermallyactivateddelayedfluorescenceemitters AT cuilinsong dielectriccontrolofreverseintersystemcrossinginthermallyactivateddelayedfluorescenceemitters AT drummondbluebellh dielectriccontrolofreverseintersystemcrossinginthermallyactivateddelayedfluorescenceemitters AT scholesgregoryd dielectriccontrolofreverseintersystemcrossinginthermallyactivateddelayedfluorescenceemitters AT olivieryoann dielectriccontrolofreverseintersystemcrossinginthermallyactivateddelayedfluorescenceemitters AT raoakshay dielectriccontrolofreverseintersystemcrossinginthermallyactivateddelayedfluorescenceemitters AT friendrichardh dielectriccontrolofreverseintersystemcrossinginthermallyactivateddelayedfluorescenceemitters AT beljonnedavid dielectriccontrolofreverseintersystemcrossinginthermallyactivateddelayedfluorescenceemitters |