Cargando…

Dielectric control of reverse intersystem crossing in thermally activated delayed fluorescence emitters

Thermally-activated delayed fluorescence (TADF) enables organic semiconductors with charge transfer (CT)-type excitons to convert dark triplet states into bright singlets via reverse intersystem crossing (rISC). However, thus far the contribution from the dielectric environment has received insuffic...

Descripción completa

Detalles Bibliográficos
Autores principales: Gillett, Alexander J., Pershin, Anton, Pandya, Raj, Feldmann, Sascha, Sneyd, Alexander J., Alvertis, Antonios M., Evans, Emrys W., Thomas, Tudor H., Cui, Lin-Song, Drummond, Bluebell H., Scholes, Gregory D., Olivier, Yoann, Rao, Akshay, Friend, Richard H., Beljonne, David
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7613666/
https://www.ncbi.nlm.nih.gov/pubmed/35927434
http://dx.doi.org/10.1038/s41563-022-01321-2
_version_ 1783605507110469632
author Gillett, Alexander J.
Pershin, Anton
Pandya, Raj
Feldmann, Sascha
Sneyd, Alexander J.
Alvertis, Antonios M.
Evans, Emrys W.
Thomas, Tudor H.
Cui, Lin-Song
Drummond, Bluebell H.
Scholes, Gregory D.
Olivier, Yoann
Rao, Akshay
Friend, Richard H.
Beljonne, David
author_facet Gillett, Alexander J.
Pershin, Anton
Pandya, Raj
Feldmann, Sascha
Sneyd, Alexander J.
Alvertis, Antonios M.
Evans, Emrys W.
Thomas, Tudor H.
Cui, Lin-Song
Drummond, Bluebell H.
Scholes, Gregory D.
Olivier, Yoann
Rao, Akshay
Friend, Richard H.
Beljonne, David
author_sort Gillett, Alexander J.
collection PubMed
description Thermally-activated delayed fluorescence (TADF) enables organic semiconductors with charge transfer (CT)-type excitons to convert dark triplet states into bright singlets via reverse intersystem crossing (rISC). However, thus far the contribution from the dielectric environment has received insufficient attention. Here, we study the role of the dielectric environment in a range of TADF materials with varying changes in dipole moment upon optical excitation. In dipolar emitters, we observe how environmental reorganisation after excitation triggers the full CT exciton formation, minimising the singlet-triplet energy gap, with the emergence of two (reactant-inactive) modes acting as a vibrational fingerprint of the CT product. In contrast, the dielectric environment plays a smaller role in less dipolar materials. The analysis of energy-time trajectories and their free-energy functions reveal that the dielectric environment significantly reduces the activation energy for rISC in dipolar TADF emitters, increasing the rISC rate by three orders of magnitude versus the isolated molecule.
format Online
Article
Text
id pubmed-7613666
institution National Center for Biotechnology Information
language English
publishDate 2022
record_format MEDLINE/PubMed
spelling pubmed-76136662023-02-04 Dielectric control of reverse intersystem crossing in thermally activated delayed fluorescence emitters Gillett, Alexander J. Pershin, Anton Pandya, Raj Feldmann, Sascha Sneyd, Alexander J. Alvertis, Antonios M. Evans, Emrys W. Thomas, Tudor H. Cui, Lin-Song Drummond, Bluebell H. Scholes, Gregory D. Olivier, Yoann Rao, Akshay Friend, Richard H. Beljonne, David Nat Mater Article Thermally-activated delayed fluorescence (TADF) enables organic semiconductors with charge transfer (CT)-type excitons to convert dark triplet states into bright singlets via reverse intersystem crossing (rISC). However, thus far the contribution from the dielectric environment has received insufficient attention. Here, we study the role of the dielectric environment in a range of TADF materials with varying changes in dipole moment upon optical excitation. In dipolar emitters, we observe how environmental reorganisation after excitation triggers the full CT exciton formation, minimising the singlet-triplet energy gap, with the emergence of two (reactant-inactive) modes acting as a vibrational fingerprint of the CT product. In contrast, the dielectric environment plays a smaller role in less dipolar materials. The analysis of energy-time trajectories and their free-energy functions reveal that the dielectric environment significantly reduces the activation energy for rISC in dipolar TADF emitters, increasing the rISC rate by three orders of magnitude versus the isolated molecule. 2022-10 2022-08-04 /pmc/articles/PMC7613666/ /pubmed/35927434 http://dx.doi.org/10.1038/s41563-022-01321-2 Text en https://www.springernature.com/gp/open-research/policies/accepted-manuscript-termsUsers may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
spellingShingle Article
Gillett, Alexander J.
Pershin, Anton
Pandya, Raj
Feldmann, Sascha
Sneyd, Alexander J.
Alvertis, Antonios M.
Evans, Emrys W.
Thomas, Tudor H.
Cui, Lin-Song
Drummond, Bluebell H.
Scholes, Gregory D.
Olivier, Yoann
Rao, Akshay
Friend, Richard H.
Beljonne, David
Dielectric control of reverse intersystem crossing in thermally activated delayed fluorescence emitters
title Dielectric control of reverse intersystem crossing in thermally activated delayed fluorescence emitters
title_full Dielectric control of reverse intersystem crossing in thermally activated delayed fluorescence emitters
title_fullStr Dielectric control of reverse intersystem crossing in thermally activated delayed fluorescence emitters
title_full_unstemmed Dielectric control of reverse intersystem crossing in thermally activated delayed fluorescence emitters
title_short Dielectric control of reverse intersystem crossing in thermally activated delayed fluorescence emitters
title_sort dielectric control of reverse intersystem crossing in thermally activated delayed fluorescence emitters
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7613666/
https://www.ncbi.nlm.nih.gov/pubmed/35927434
http://dx.doi.org/10.1038/s41563-022-01321-2
work_keys_str_mv AT gillettalexanderj dielectriccontrolofreverseintersystemcrossinginthermallyactivateddelayedfluorescenceemitters
AT pershinanton dielectriccontrolofreverseintersystemcrossinginthermallyactivateddelayedfluorescenceemitters
AT pandyaraj dielectriccontrolofreverseintersystemcrossinginthermallyactivateddelayedfluorescenceemitters
AT feldmannsascha dielectriccontrolofreverseintersystemcrossinginthermallyactivateddelayedfluorescenceemitters
AT sneydalexanderj dielectriccontrolofreverseintersystemcrossinginthermallyactivateddelayedfluorescenceemitters
AT alvertisantoniosm dielectriccontrolofreverseintersystemcrossinginthermallyactivateddelayedfluorescenceemitters
AT evansemrysw dielectriccontrolofreverseintersystemcrossinginthermallyactivateddelayedfluorescenceemitters
AT thomastudorh dielectriccontrolofreverseintersystemcrossinginthermallyactivateddelayedfluorescenceemitters
AT cuilinsong dielectriccontrolofreverseintersystemcrossinginthermallyactivateddelayedfluorescenceemitters
AT drummondbluebellh dielectriccontrolofreverseintersystemcrossinginthermallyactivateddelayedfluorescenceemitters
AT scholesgregoryd dielectriccontrolofreverseintersystemcrossinginthermallyactivateddelayedfluorescenceemitters
AT olivieryoann dielectriccontrolofreverseintersystemcrossinginthermallyactivateddelayedfluorescenceemitters
AT raoakshay dielectriccontrolofreverseintersystemcrossinginthermallyactivateddelayedfluorescenceemitters
AT friendrichardh dielectriccontrolofreverseintersystemcrossinginthermallyactivateddelayedfluorescenceemitters
AT beljonnedavid dielectriccontrolofreverseintersystemcrossinginthermallyactivateddelayedfluorescenceemitters