Cargando…
Scoring Functions for Protein-Ligand Binding Affinity Prediction Using Structure-based Deep Learning: A Review
The rapid and accurate in silico prediction of protein-ligand binding free energies or binding affinities has the potential to transform drug discovery. In recent years, there has been a rapid growth of interest in deep learning methods for the prediction of protein-ligand binding affinities based o...
Autores principales: | Meli, Rocco, Morris, Garrett M., Biggin, Philip C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7613667/ https://www.ncbi.nlm.nih.gov/pubmed/36187180 http://dx.doi.org/10.3389/fbinf.2022.885983 |
Ejemplares similares
-
Learning protein-ligand binding affinity with atomic environment vectors
por: Meli, Rocco, et al.
Publicado: (2021) -
DeepBindRG: a deep learning based method for estimating effective protein–ligand affinity
por: Zhang, Haiping, et al.
Publicado: (2019) -
Machine learning methods for protein-protein binding affinity prediction in protein design
por: Guo, Zhongliang, et al.
Publicado: (2022) -
DeepBindPoc: a deep learning method to rank ligand binding pockets using molecular vector representation
por: Zhang, Haiping, et al.
Publicado: (2020) -
Image-based effective feature generation for protein structural class and ligand binding prediction
por: Sadique, Nafees, et al.
Publicado: (2020)