Cargando…
Computationally efficient neural network classifiers for next generation closed loop neuromodulation therapy – a case study in epilepsy
This work explores the potential utility of neural network classifiers for real-time classification of field-potential based biomarkers in next-generation responsive neuromodulation systems. Compared to classical filter-based classifiers, neural networks offer an ease of patient-specific parameter t...
Autores principales: | Kavoosi, Ali, Toth, Robert, Benjaber, Moaad, Zamora, Mayela, Valentín, Antonio, Sharott, Andrew, Denison, Timothy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7613668/ https://www.ncbi.nlm.nih.gov/pubmed/36085909 http://dx.doi.org/10.1109/EMBC48229.2022.9871793 |
Ejemplares similares
-
Regulation of arousal and performance of a healthy non-human primate using closed-loop central thalamic deep brain stimulation
por: Baker, Jonathan L., et al.
Publicado: (2023) -
DyNeuMo Mk-2: An Investigational Circadian-Locked Neuromodulator with Responsive Stimulation for Applied Chronobiology
por: Toth, Robert, et al.
Publicado: (2020) -
The Design of Brainstem Interfaces: Characterisation of Physiological Artefacts and Implications for Closed-loop Algorithms
por: Deli, Alceste, et al.
Publicado: (2023) -
Case Report: Embedding “Digital Chronotherapy” Into Medical Devices—A Canine Validation for Controlling Status Epilepticus Through Multi-Scale Rhythmic Brain Stimulation
por: Zamora, Mayela, et al.
Publicado: (2021) -
Physiological Artifacts and the Implications for Brain-Machine-Interface Design
por: Sorkhabi, Majid Memarian, et al.
Publicado: (2020)