Cargando…
Model-Based Learning for Accelerated, Limited-View 3-D Photoacoustic Tomography
Recent advances in deep learning for tomographic reconstructions have shown great potential to create accurate and high quality images with a considerable speed up. In this paper, we present a deep neural network that is specifically designed to provide high resolution 3-D images from restricted pho...
Autores principales: | Hauptmann, Andreas, Lucka, Felix, Betcke, Marta, Huynh, Nam, Adler, Jonas, Cox, Ben, Beard, Paul, Ourselin, Sebastien, Arridge, Simon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7613684/ https://www.ncbi.nlm.nih.gov/pubmed/29870367 http://dx.doi.org/10.1109/TMI.2018.2820382 |
Ejemplares similares
-
Single-pixel camera photoacoustic tomography
por: Huynh, Nam, et al.
Publicado: (2019) -
Deep learning in photoacoustic tomography: current approaches and future directions
por: Hauptmann, Andreas, et al.
Publicado: (2020) -
Limited-View and Sparse Photoacoustic Tomography for Neuroimaging with Deep Learning
por: Guan, Steven, et al.
Publicado: (2020) -
Real‐time cardiovascular MR with spatio‐temporal artifact suppression using deep learning–proof of concept in congenital heart disease
por: Hauptmann, Andreas, et al.
Publicado: (2018) -
Investigation of photoacoustic tomography reconstruction with a limited view from linear array
por: Ai, Min, et al.
Publicado: (2021)