Cargando…

A Data-Science Approach to Predict the Heat Capacity of Nanoporous Materials

The heat capacity of a material is a fundamental property that is of great practical importance. For example, in a carbon capture process, the heat required to regenerate a solid sorbent is directly related to the heat capacity of the material. However, for most materials suitable for carbon capture...

Descripción completa

Detalles Bibliográficos
Autores principales: Moosavi, Seyed Mohamad, Novotny, Balázs Álmos, Ongari, Daniele, Moubarak, Elias, Asgari, Mehrdad, Kadioglu, Özge, Charalambous, Charithea, Ortega-Guerrero, Andres, Farmahini, Amir H., Sarkisov, Lev, Garcia, Susana, Noé, Frank, Smit, Berend
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7613869/
https://www.ncbi.nlm.nih.gov/pubmed/36229651
http://dx.doi.org/10.1038/s41563-022-01374-3
_version_ 1783605532531097600
author Moosavi, Seyed Mohamad
Novotny, Balázs Álmos
Ongari, Daniele
Moubarak, Elias
Asgari, Mehrdad
Kadioglu, Özge
Charalambous, Charithea
Ortega-Guerrero, Andres
Farmahini, Amir H.
Sarkisov, Lev
Garcia, Susana
Noé, Frank
Smit, Berend
author_facet Moosavi, Seyed Mohamad
Novotny, Balázs Álmos
Ongari, Daniele
Moubarak, Elias
Asgari, Mehrdad
Kadioglu, Özge
Charalambous, Charithea
Ortega-Guerrero, Andres
Farmahini, Amir H.
Sarkisov, Lev
Garcia, Susana
Noé, Frank
Smit, Berend
author_sort Moosavi, Seyed Mohamad
collection PubMed
description The heat capacity of a material is a fundamental property that is of great practical importance. For example, in a carbon capture process, the heat required to regenerate a solid sorbent is directly related to the heat capacity of the material. However, for most materials suitable for carbon capture applications the heat capacity is not known, and thus the standard procedure is to assume the same value for all materials. In this work, we developed a machine-learning approach, trained on density functional theory simulations, to accurately predict the heat capacity of these materials, i.e., zeolites, metal-organic frameworks, and covalent-organic frameworks. The accuracy of our prediction is confirmed with experimental data. Finally, for a temperature swing adsorption process that captures carbon from the flue gas of a coal-fired power plant, we show that for some materials the heat requirement is reduced by as much as a factor of two using the correct heat capacity.
format Online
Article
Text
id pubmed-7613869
institution National Center for Biotechnology Information
language English
publishDate 2022
record_format MEDLINE/PubMed
spelling pubmed-76138692023-04-13 A Data-Science Approach to Predict the Heat Capacity of Nanoporous Materials Moosavi, Seyed Mohamad Novotny, Balázs Álmos Ongari, Daniele Moubarak, Elias Asgari, Mehrdad Kadioglu, Özge Charalambous, Charithea Ortega-Guerrero, Andres Farmahini, Amir H. Sarkisov, Lev Garcia, Susana Noé, Frank Smit, Berend Nat Mater Article The heat capacity of a material is a fundamental property that is of great practical importance. For example, in a carbon capture process, the heat required to regenerate a solid sorbent is directly related to the heat capacity of the material. However, for most materials suitable for carbon capture applications the heat capacity is not known, and thus the standard procedure is to assume the same value for all materials. In this work, we developed a machine-learning approach, trained on density functional theory simulations, to accurately predict the heat capacity of these materials, i.e., zeolites, metal-organic frameworks, and covalent-organic frameworks. The accuracy of our prediction is confirmed with experimental data. Finally, for a temperature swing adsorption process that captures carbon from the flue gas of a coal-fired power plant, we show that for some materials the heat requirement is reduced by as much as a factor of two using the correct heat capacity. 2022-12 2022-10-13 /pmc/articles/PMC7613869/ /pubmed/36229651 http://dx.doi.org/10.1038/s41563-022-01374-3 Text en https://www.springernature.com/gp/open-research/policies/accepted-manuscript-termsUsers may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
spellingShingle Article
Moosavi, Seyed Mohamad
Novotny, Balázs Álmos
Ongari, Daniele
Moubarak, Elias
Asgari, Mehrdad
Kadioglu, Özge
Charalambous, Charithea
Ortega-Guerrero, Andres
Farmahini, Amir H.
Sarkisov, Lev
Garcia, Susana
Noé, Frank
Smit, Berend
A Data-Science Approach to Predict the Heat Capacity of Nanoporous Materials
title A Data-Science Approach to Predict the Heat Capacity of Nanoporous Materials
title_full A Data-Science Approach to Predict the Heat Capacity of Nanoporous Materials
title_fullStr A Data-Science Approach to Predict the Heat Capacity of Nanoporous Materials
title_full_unstemmed A Data-Science Approach to Predict the Heat Capacity of Nanoporous Materials
title_short A Data-Science Approach to Predict the Heat Capacity of Nanoporous Materials
title_sort data-science approach to predict the heat capacity of nanoporous materials
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7613869/
https://www.ncbi.nlm.nih.gov/pubmed/36229651
http://dx.doi.org/10.1038/s41563-022-01374-3
work_keys_str_mv AT moosaviseyedmohamad adatascienceapproachtopredicttheheatcapacityofnanoporousmaterials
AT novotnybalazsalmos adatascienceapproachtopredicttheheatcapacityofnanoporousmaterials
AT ongaridaniele adatascienceapproachtopredicttheheatcapacityofnanoporousmaterials
AT moubarakelias adatascienceapproachtopredicttheheatcapacityofnanoporousmaterials
AT asgarimehrdad adatascienceapproachtopredicttheheatcapacityofnanoporousmaterials
AT kadiogluozge adatascienceapproachtopredicttheheatcapacityofnanoporousmaterials
AT charalambouscharithea adatascienceapproachtopredicttheheatcapacityofnanoporousmaterials
AT ortegaguerreroandres adatascienceapproachtopredicttheheatcapacityofnanoporousmaterials
AT farmahiniamirh adatascienceapproachtopredicttheheatcapacityofnanoporousmaterials
AT sarkisovlev adatascienceapproachtopredicttheheatcapacityofnanoporousmaterials
AT garciasusana adatascienceapproachtopredicttheheatcapacityofnanoporousmaterials
AT noefrank adatascienceapproachtopredicttheheatcapacityofnanoporousmaterials
AT smitberend adatascienceapproachtopredicttheheatcapacityofnanoporousmaterials
AT moosaviseyedmohamad datascienceapproachtopredicttheheatcapacityofnanoporousmaterials
AT novotnybalazsalmos datascienceapproachtopredicttheheatcapacityofnanoporousmaterials
AT ongaridaniele datascienceapproachtopredicttheheatcapacityofnanoporousmaterials
AT moubarakelias datascienceapproachtopredicttheheatcapacityofnanoporousmaterials
AT asgarimehrdad datascienceapproachtopredicttheheatcapacityofnanoporousmaterials
AT kadiogluozge datascienceapproachtopredicttheheatcapacityofnanoporousmaterials
AT charalambouscharithea datascienceapproachtopredicttheheatcapacityofnanoporousmaterials
AT ortegaguerreroandres datascienceapproachtopredicttheheatcapacityofnanoporousmaterials
AT farmahiniamirh datascienceapproachtopredicttheheatcapacityofnanoporousmaterials
AT sarkisovlev datascienceapproachtopredicttheheatcapacityofnanoporousmaterials
AT garciasusana datascienceapproachtopredicttheheatcapacityofnanoporousmaterials
AT noefrank datascienceapproachtopredicttheheatcapacityofnanoporousmaterials
AT smitberend datascienceapproachtopredicttheheatcapacityofnanoporousmaterials