Cargando…
A Data-Science Approach to Predict the Heat Capacity of Nanoporous Materials
The heat capacity of a material is a fundamental property that is of great practical importance. For example, in a carbon capture process, the heat required to regenerate a solid sorbent is directly related to the heat capacity of the material. However, for most materials suitable for carbon capture...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7613869/ https://www.ncbi.nlm.nih.gov/pubmed/36229651 http://dx.doi.org/10.1038/s41563-022-01374-3 |
_version_ | 1783605532531097600 |
---|---|
author | Moosavi, Seyed Mohamad Novotny, Balázs Álmos Ongari, Daniele Moubarak, Elias Asgari, Mehrdad Kadioglu, Özge Charalambous, Charithea Ortega-Guerrero, Andres Farmahini, Amir H. Sarkisov, Lev Garcia, Susana Noé, Frank Smit, Berend |
author_facet | Moosavi, Seyed Mohamad Novotny, Balázs Álmos Ongari, Daniele Moubarak, Elias Asgari, Mehrdad Kadioglu, Özge Charalambous, Charithea Ortega-Guerrero, Andres Farmahini, Amir H. Sarkisov, Lev Garcia, Susana Noé, Frank Smit, Berend |
author_sort | Moosavi, Seyed Mohamad |
collection | PubMed |
description | The heat capacity of a material is a fundamental property that is of great practical importance. For example, in a carbon capture process, the heat required to regenerate a solid sorbent is directly related to the heat capacity of the material. However, for most materials suitable for carbon capture applications the heat capacity is not known, and thus the standard procedure is to assume the same value for all materials. In this work, we developed a machine-learning approach, trained on density functional theory simulations, to accurately predict the heat capacity of these materials, i.e., zeolites, metal-organic frameworks, and covalent-organic frameworks. The accuracy of our prediction is confirmed with experimental data. Finally, for a temperature swing adsorption process that captures carbon from the flue gas of a coal-fired power plant, we show that for some materials the heat requirement is reduced by as much as a factor of two using the correct heat capacity. |
format | Online Article Text |
id | pubmed-7613869 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
record_format | MEDLINE/PubMed |
spelling | pubmed-76138692023-04-13 A Data-Science Approach to Predict the Heat Capacity of Nanoporous Materials Moosavi, Seyed Mohamad Novotny, Balázs Álmos Ongari, Daniele Moubarak, Elias Asgari, Mehrdad Kadioglu, Özge Charalambous, Charithea Ortega-Guerrero, Andres Farmahini, Amir H. Sarkisov, Lev Garcia, Susana Noé, Frank Smit, Berend Nat Mater Article The heat capacity of a material is a fundamental property that is of great practical importance. For example, in a carbon capture process, the heat required to regenerate a solid sorbent is directly related to the heat capacity of the material. However, for most materials suitable for carbon capture applications the heat capacity is not known, and thus the standard procedure is to assume the same value for all materials. In this work, we developed a machine-learning approach, trained on density functional theory simulations, to accurately predict the heat capacity of these materials, i.e., zeolites, metal-organic frameworks, and covalent-organic frameworks. The accuracy of our prediction is confirmed with experimental data. Finally, for a temperature swing adsorption process that captures carbon from the flue gas of a coal-fired power plant, we show that for some materials the heat requirement is reduced by as much as a factor of two using the correct heat capacity. 2022-12 2022-10-13 /pmc/articles/PMC7613869/ /pubmed/36229651 http://dx.doi.org/10.1038/s41563-022-01374-3 Text en https://www.springernature.com/gp/open-research/policies/accepted-manuscript-termsUsers may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms |
spellingShingle | Article Moosavi, Seyed Mohamad Novotny, Balázs Álmos Ongari, Daniele Moubarak, Elias Asgari, Mehrdad Kadioglu, Özge Charalambous, Charithea Ortega-Guerrero, Andres Farmahini, Amir H. Sarkisov, Lev Garcia, Susana Noé, Frank Smit, Berend A Data-Science Approach to Predict the Heat Capacity of Nanoporous Materials |
title | A Data-Science Approach to Predict the Heat Capacity of Nanoporous Materials |
title_full | A Data-Science Approach to Predict the Heat Capacity of Nanoporous Materials |
title_fullStr | A Data-Science Approach to Predict the Heat Capacity of Nanoporous Materials |
title_full_unstemmed | A Data-Science Approach to Predict the Heat Capacity of Nanoporous Materials |
title_short | A Data-Science Approach to Predict the Heat Capacity of Nanoporous Materials |
title_sort | data-science approach to predict the heat capacity of nanoporous materials |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7613869/ https://www.ncbi.nlm.nih.gov/pubmed/36229651 http://dx.doi.org/10.1038/s41563-022-01374-3 |
work_keys_str_mv | AT moosaviseyedmohamad adatascienceapproachtopredicttheheatcapacityofnanoporousmaterials AT novotnybalazsalmos adatascienceapproachtopredicttheheatcapacityofnanoporousmaterials AT ongaridaniele adatascienceapproachtopredicttheheatcapacityofnanoporousmaterials AT moubarakelias adatascienceapproachtopredicttheheatcapacityofnanoporousmaterials AT asgarimehrdad adatascienceapproachtopredicttheheatcapacityofnanoporousmaterials AT kadiogluozge adatascienceapproachtopredicttheheatcapacityofnanoporousmaterials AT charalambouscharithea adatascienceapproachtopredicttheheatcapacityofnanoporousmaterials AT ortegaguerreroandres adatascienceapproachtopredicttheheatcapacityofnanoporousmaterials AT farmahiniamirh adatascienceapproachtopredicttheheatcapacityofnanoporousmaterials AT sarkisovlev adatascienceapproachtopredicttheheatcapacityofnanoporousmaterials AT garciasusana adatascienceapproachtopredicttheheatcapacityofnanoporousmaterials AT noefrank adatascienceapproachtopredicttheheatcapacityofnanoporousmaterials AT smitberend adatascienceapproachtopredicttheheatcapacityofnanoporousmaterials AT moosaviseyedmohamad datascienceapproachtopredicttheheatcapacityofnanoporousmaterials AT novotnybalazsalmos datascienceapproachtopredicttheheatcapacityofnanoporousmaterials AT ongaridaniele datascienceapproachtopredicttheheatcapacityofnanoporousmaterials AT moubarakelias datascienceapproachtopredicttheheatcapacityofnanoporousmaterials AT asgarimehrdad datascienceapproachtopredicttheheatcapacityofnanoporousmaterials AT kadiogluozge datascienceapproachtopredicttheheatcapacityofnanoporousmaterials AT charalambouscharithea datascienceapproachtopredicttheheatcapacityofnanoporousmaterials AT ortegaguerreroandres datascienceapproachtopredicttheheatcapacityofnanoporousmaterials AT farmahiniamirh datascienceapproachtopredicttheheatcapacityofnanoporousmaterials AT sarkisovlev datascienceapproachtopredicttheheatcapacityofnanoporousmaterials AT garciasusana datascienceapproachtopredicttheheatcapacityofnanoporousmaterials AT noefrank datascienceapproachtopredicttheheatcapacityofnanoporousmaterials AT smitberend datascienceapproachtopredicttheheatcapacityofnanoporousmaterials |