Cargando…
Imputation Strategies Under Clinical Presence: Impact on Algorithmic Fairness
Biases have marked medical history, leading to unequal care affecting marginalised groups. The patterns of missingness in observational data often reflect these group discrepancies, but the algorithmic fairness implications of group-specific missingness are not well understood. Despite its potential...
Autores principales: | Jeanselme, Vincent, De-Arteaga, Maria, Zhang, Zhe, Barrett, Jessica, Tom, Brian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7614014/ https://www.ncbi.nlm.nih.gov/pubmed/36601036 |
Ejemplares similares
-
Neural Survival Clustering: Non-parametric mixture of neural networks for survival clustering
por: Jeanselme, Vincent, et al.
Publicado: (2022) -
Evaluating algorithmic fairness in the presence of clinical guidelines: the case of atherosclerotic cardiovascular disease risk estimation
por: Foryciarz, Agata, et al.
Publicado: (2022) -
Impact of pre- and post-variant filtration strategies on imputation
por: Charon, Céline, et al.
Publicado: (2021) -
Sex differences in post cardiac arrest discharge locations
por: Jeanselme, Vincent, et al.
Publicado: (2021) -
Assessment of Imputation Quality: Comparison of Phasing and Imputation Algorithms in Real Data
por: Stahl, Katharina, et al.
Publicado: (2021)