Cargando…
WACPN: A Neural Network for Pneumonia Diagnosis
Community-acquired pneumonia (CAP) is considered a sort of pneumonia developed outside hospitals and clinics. To diagnose community-acquired pneumonia (CAP) more efficiently, we proposed a novel neural network model. We introduce the 2-dimensional wavelet entropy (2d-WE) layer and an adaptive chaoti...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7614037/ https://www.ncbi.nlm.nih.gov/pubmed/36636525 http://dx.doi.org/10.32604/csse.2023.031330 |
_version_ | 1783605556828700672 |
---|---|
author | Wang, Shui-Hua Khan, Muhammad Attique Zhu, Ziquan Zhang, Yu-Dong |
author_facet | Wang, Shui-Hua Khan, Muhammad Attique Zhu, Ziquan Zhang, Yu-Dong |
author_sort | Wang, Shui-Hua |
collection | PubMed |
description | Community-acquired pneumonia (CAP) is considered a sort of pneumonia developed outside hospitals and clinics. To diagnose community-acquired pneumonia (CAP) more efficiently, we proposed a novel neural network model. We introduce the 2-dimensional wavelet entropy (2d-WE) layer and an adaptive chaotic particle swarm optimization (ACP) algorithm to train the feed-forward neural network. The ACP uses adaptive inertia weight factor (AIWF) and Rossler attractor (RA) to improve the performance of standard particle swarm optimization. The final combined model is named WE-layer ACP-based network (WACPN), which attains a sensitivity of 91.87±1.37%, a specificity of 90.70±1.19%, a precision of 91.01±1.12%, an accuracy of 91.29±1.09%, F1 score of 91.43±1.09%, an MCC of 82.59±2.19%, and an FMI of 91.44±1.09%. The AUC of this WACPN model is 0.9577. We find that the maximum deposition level chosen as four can obtain the best result. Experiments demonstrate the effectiveness of both AIWF and RA. Finally, this proposed WACPN is efficient in diagnosing CAP and superior to six state-of-the-art models. Our model will be distributed to the cloud computing environment. |
format | Online Article Text |
id | pubmed-7614037 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
record_format | MEDLINE/PubMed |
spelling | pubmed-76140372023-01-11 WACPN: A Neural Network for Pneumonia Diagnosis Wang, Shui-Hua Khan, Muhammad Attique Zhu, Ziquan Zhang, Yu-Dong Int J Comput Syst Sci Eng Article Community-acquired pneumonia (CAP) is considered a sort of pneumonia developed outside hospitals and clinics. To diagnose community-acquired pneumonia (CAP) more efficiently, we proposed a novel neural network model. We introduce the 2-dimensional wavelet entropy (2d-WE) layer and an adaptive chaotic particle swarm optimization (ACP) algorithm to train the feed-forward neural network. The ACP uses adaptive inertia weight factor (AIWF) and Rossler attractor (RA) to improve the performance of standard particle swarm optimization. The final combined model is named WE-layer ACP-based network (WACPN), which attains a sensitivity of 91.87±1.37%, a specificity of 90.70±1.19%, a precision of 91.01±1.12%, an accuracy of 91.29±1.09%, F1 score of 91.43±1.09%, an MCC of 82.59±2.19%, and an FMI of 91.44±1.09%. The AUC of this WACPN model is 0.9577. We find that the maximum deposition level chosen as four can obtain the best result. Experiments demonstrate the effectiveness of both AIWF and RA. Finally, this proposed WACPN is efficient in diagnosing CAP and superior to six state-of-the-art models. Our model will be distributed to the cloud computing environment. 2023 /pmc/articles/PMC7614037/ /pubmed/36636525 http://dx.doi.org/10.32604/csse.2023.031330 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/) International license. |
spellingShingle | Article Wang, Shui-Hua Khan, Muhammad Attique Zhu, Ziquan Zhang, Yu-Dong WACPN: A Neural Network for Pneumonia Diagnosis |
title | WACPN: A Neural Network for Pneumonia Diagnosis |
title_full | WACPN: A Neural Network for Pneumonia Diagnosis |
title_fullStr | WACPN: A Neural Network for Pneumonia Diagnosis |
title_full_unstemmed | WACPN: A Neural Network for Pneumonia Diagnosis |
title_short | WACPN: A Neural Network for Pneumonia Diagnosis |
title_sort | wacpn: a neural network for pneumonia diagnosis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7614037/ https://www.ncbi.nlm.nih.gov/pubmed/36636525 http://dx.doi.org/10.32604/csse.2023.031330 |
work_keys_str_mv | AT wangshuihua wacpnaneuralnetworkforpneumoniadiagnosis AT khanmuhammadattique wacpnaneuralnetworkforpneumoniadiagnosis AT zhuziquan wacpnaneuralnetworkforpneumoniadiagnosis AT zhangyudong wacpnaneuralnetworkforpneumoniadiagnosis |