Cargando…
Retrieval of carbon content and biomass from hyperspectral imagery over cultivated areas
Spaceborne imaging spectroscopy is a highly promising data source for all agricultural management and research disciplines that require spatio-temporal information on crop properties. Recently launched science-driven missions, such as the Environmental Mapping and Analysis Program (EnMAP), deliver u...
Autores principales: | Wocher, Matthias, Berger, Katja, Verrelst, Jochem, Hank, Tobias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7614045/ https://www.ncbi.nlm.nih.gov/pubmed/36643957 http://dx.doi.org/10.1016/j.isprsjprs.2022.09.003 |
Ejemplares similares
-
Assessing Non-Photosynthetic Cropland Biomass from Spaceborne Hyperspectral Imagery
por: Berger, Katja, et al.
Publicado: (2021) -
Retrieval of aboveground crop nitrogen content with a hybrid machine learning method
por: Berger, Katja, et al.
Publicado: (2020) -
A Survey of Active Learning for Quantifying Vegetation Traits from Terrestrial Earth Observation Data
por: Berger, Katja, et al.
Publicado: (2021) -
Top-of-Atmosphere Retrieval of Multiple Crop Traits Using Variational Heteroscedastic Gaussian Processes within a Hybrid Workflow
por: Estévez, José, et al.
Publicado: (2021) -
Estimating soil moisture content under grassland with hyperspectral data using radiative transfer modelling and machine learning
por: Döpper, Veronika, et al.
Publicado: (2022)