Cargando…
Automated reconstruction of whole-embryo cell lineages by learning from sparse annotations
We present a method to automatically identify and track nuclei in time-lapse microscopy recordings of entire developing embryos. The method combines deep learning and global optimization. On a mouse dataset, it reconstructs 75.8% of cell lineages spanning 1 h, as compared to 31.8% for the competing...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7614077/ https://www.ncbi.nlm.nih.gov/pubmed/36065022 http://dx.doi.org/10.1038/s41587-022-01427-7 |
_version_ | 1783605560606720000 |
---|---|
author | Malin-Mayor, Caroline Hirsch, Peter Guignard, Leo McDole, Katie Wan, Yinan Lemon, William C. Kainmueller, Dagmar Keller, Philipp J. Preibisch, Stephan Funke, Jan |
author_facet | Malin-Mayor, Caroline Hirsch, Peter Guignard, Leo McDole, Katie Wan, Yinan Lemon, William C. Kainmueller, Dagmar Keller, Philipp J. Preibisch, Stephan Funke, Jan |
author_sort | Malin-Mayor, Caroline |
collection | PubMed |
description | We present a method to automatically identify and track nuclei in time-lapse microscopy recordings of entire developing embryos. The method combines deep learning and global optimization. On a mouse dataset, it reconstructs 75.8% of cell lineages spanning 1 h, as compared to 31.8% for the competing method. Our approach improves understanding of where and when cell fate decisions are made in developing embryos, tissues, and organs. |
format | Online Article Text |
id | pubmed-7614077 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group US |
record_format | MEDLINE/PubMed |
spelling | pubmed-76140772023-01-18 Automated reconstruction of whole-embryo cell lineages by learning from sparse annotations Malin-Mayor, Caroline Hirsch, Peter Guignard, Leo McDole, Katie Wan, Yinan Lemon, William C. Kainmueller, Dagmar Keller, Philipp J. Preibisch, Stephan Funke, Jan Nat Biotechnol Brief Communication We present a method to automatically identify and track nuclei in time-lapse microscopy recordings of entire developing embryos. The method combines deep learning and global optimization. On a mouse dataset, it reconstructs 75.8% of cell lineages spanning 1 h, as compared to 31.8% for the competing method. Our approach improves understanding of where and when cell fate decisions are made in developing embryos, tissues, and organs. Nature Publishing Group US 2022-09-05 2023 /pmc/articles/PMC7614077/ /pubmed/36065022 http://dx.doi.org/10.1038/s41587-022-01427-7 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Brief Communication Malin-Mayor, Caroline Hirsch, Peter Guignard, Leo McDole, Katie Wan, Yinan Lemon, William C. Kainmueller, Dagmar Keller, Philipp J. Preibisch, Stephan Funke, Jan Automated reconstruction of whole-embryo cell lineages by learning from sparse annotations |
title | Automated reconstruction of whole-embryo cell lineages by learning from sparse annotations |
title_full | Automated reconstruction of whole-embryo cell lineages by learning from sparse annotations |
title_fullStr | Automated reconstruction of whole-embryo cell lineages by learning from sparse annotations |
title_full_unstemmed | Automated reconstruction of whole-embryo cell lineages by learning from sparse annotations |
title_short | Automated reconstruction of whole-embryo cell lineages by learning from sparse annotations |
title_sort | automated reconstruction of whole-embryo cell lineages by learning from sparse annotations |
topic | Brief Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7614077/ https://www.ncbi.nlm.nih.gov/pubmed/36065022 http://dx.doi.org/10.1038/s41587-022-01427-7 |
work_keys_str_mv | AT malinmayorcaroline automatedreconstructionofwholeembryocelllineagesbylearningfromsparseannotations AT hirschpeter automatedreconstructionofwholeembryocelllineagesbylearningfromsparseannotations AT guignardleo automatedreconstructionofwholeembryocelllineagesbylearningfromsparseannotations AT mcdolekatie automatedreconstructionofwholeembryocelllineagesbylearningfromsparseannotations AT wanyinan automatedreconstructionofwholeembryocelllineagesbylearningfromsparseannotations AT lemonwilliamc automatedreconstructionofwholeembryocelllineagesbylearningfromsparseannotations AT kainmuellerdagmar automatedreconstructionofwholeembryocelllineagesbylearningfromsparseannotations AT kellerphilippj automatedreconstructionofwholeembryocelllineagesbylearningfromsparseannotations AT preibischstephan automatedreconstructionofwholeembryocelllineagesbylearningfromsparseannotations AT funkejan automatedreconstructionofwholeembryocelllineagesbylearningfromsparseannotations |