Cargando…
Automated reconstruction of whole-embryo cell lineages by learning from sparse annotations
We present a method to automatically identify and track nuclei in time-lapse microscopy recordings of entire developing embryos. The method combines deep learning and global optimization. On a mouse dataset, it reconstructs 75.8% of cell lineages spanning 1 h, as compared to 31.8% for the competing...
Autores principales: | Malin-Mayor, Caroline, Hirsch, Peter, Guignard, Leo, McDole, Katie, Wan, Yinan, Lemon, William C., Kainmueller, Dagmar, Keller, Philipp J., Preibisch, Stephan, Funke, Jan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7614077/ https://www.ncbi.nlm.nih.gov/pubmed/36065022 http://dx.doi.org/10.1038/s41587-022-01427-7 |
Ejemplares similares
-
Imaging the onset of oscillatory signaling dynamics during mouse embryo gastrulation
por: Falk, Henning J., et al.
Publicado: (2022) -
Hinge point emergence in mammalian spinal neurulation
por: de Goederen, Veerle, et al.
Publicado: (2022) -
Whole-central nervous system functional imaging in larval Drosophila
por: Lemon, William C., et al.
Publicado: (2015) -
The function of lamins in the context of tissue building and maintenance
por: Kim, Youngjo, et al.
Publicado: (2012) -
Automated identification of clinical features from sparsely annotated 3-dimensional medical imaging
por: Rakocz, Nadav, et al.
Publicado: (2021)