Cargando…
Generalized Geographically Weighted Regression Model within a Modularized Bayesian Framework*
Geographically weighted regression (GWR) models handle geographical dependence through a spatially varying coefficient model and have been widely used in applied science, but its general Bayesian extension is unclear because it involves a weighted log-likelihood which does not imply a probability di...
Autores principales: | Liu, Yang, Goudie, Robert J. B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7614111/ https://www.ncbi.nlm.nih.gov/pubmed/36714467 http://dx.doi.org/10.1214/22-BA1357 |
Ejemplares similares
-
Stochastic approximation cut algorithm for inference in modularized Bayesian models
por: Liu, Yang, et al.
Publicado: (2021) -
Modelling the Dynamics of an Experimental Host-Pathogen Microcosm within a Hierarchical Bayesian Framework
por: Lunn, David, et al.
Publicado: (2013) -
Correction: Modelling the Dynamics of an Experimental Host-Pathogen Microcosm within a Hierarchical Bayesian Framework
por: Lunn, David, et al.
Publicado: (2013) -
Geographically weighted temporally correlated logistic regression model
por: Liu, Yang, et al.
Publicado: (2018) -
Geographically weighted bivariate zero inflated generalized Poisson regression model and its application
por: Purhadi, et al.
Publicado: (2021)