Cargando…
Statistical methods for cis‐Mendelian randomization with two‐sample summary‐level data
Mendelian randomization (MR) is the use of genetic variants to assess the existence of a causal relationship between a risk factor and an outcome of interest. Here, we focus on two‐sample summary‐data MR analyses with many correlated variants from a single gene region, particularly on cis‐MR studies...
Autores principales: | Gkatzionis, Apostolos, Burgess, Stephen, Newcombe, Paul J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7614127/ https://www.ncbi.nlm.nih.gov/pubmed/36273411 http://dx.doi.org/10.1002/gepi.22506 |
Ejemplares similares
-
Bayesian variable selection with a pleiotropic loss function in Mendelian randomization
por: Gkatzionis, Apostolos, et al.
Publicado: (2021) -
Contextualizing selection bias in Mendelian randomization: how bad is it likely to be?
por: Gkatzionis, Apostolos, et al.
Publicado: (2019) -
A comparison of robust Mendelian randomization methods using summary data
por: Slob, Eric A. W., et al.
Publicado: (2020) -
Exploiting collider bias to apply two-sample summary data Mendelian randomization methods to one-sample individual level data
por: Barry, Ciarrah, et al.
Publicado: (2021) -
Support Interval for Two-Sample Summary Data-Based Mendelian Randomization
por: Wang, Kai
Publicado: (2023)