Cargando…
Big data, machine learning, and population health: predicting cognitive outcomes in childhood
ABSTRACT: The application of machine learning (ML) to address population health challenges has received much less attention than its application in the clinical setting. One such challenge is addressing disparities in early childhood cognitive development—a complex public health issue rooted in the...
Autores principales: | Bowe, Andrea K., Lightbody, Gordon, Staines, Anthony, Murray, Deirdre M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7614199/ https://www.ncbi.nlm.nih.gov/pubmed/35681091 http://dx.doi.org/10.1038/s41390-022-02137-1 |
Ejemplares similares
-
Predicting Low Cognitive Ability at Age 5—Feature Selection Using Machine Learning Methods and Birth Cohort Data
por: Bowe, Andrea K., et al.
Publicado: (2022) -
Predicting low cognitive ability at age 5 using machine learning methods and birth cohort data
por: Bowe, A, et al.
Publicado: (2022) -
Below Average Cognitive Ability—An under Researched Risk Factor for Emotional-Behavioural Difficulties in Childhood
por: Bowe, Andrea K., et al.
Publicado: (2021) -
The predictive value of the ages and stages questionnaire in late infancy for low average cognitive ability at age 5
por: Bowe, Andrea K., et al.
Publicado: (2022) -
Machine Learning and Big Data
por: Dulhare, Uma, et al.
Publicado: (2020)