Cargando…

Functional E3 ligase hotspots and resistance mechanisms to small-molecule degraders

Targeted protein degradation is a novel pharmacology established by drugs that recruit target proteins to E3 ubiquitin ligases. Based on the structure of the degrader and the target, different E3 interfaces are critically involved, thus forming defined “functional hotspots”. Understanding disruptive...

Descripción completa

Detalles Bibliográficos
Autores principales: Hanzl, Alexander, Casement, Ryan, Imrichova, Hana, Hughes, Scott J., Barone, Eleonora, Testa, Andrea, Bauer, Sophie, Wright, Jane, Brand, Matthias, Ciulli, Alessio, Winter, Georg E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7614256/
https://www.ncbi.nlm.nih.gov/pubmed/36329119
http://dx.doi.org/10.1038/s41589-022-01177-2
_version_ 1783605585958141952
author Hanzl, Alexander
Casement, Ryan
Imrichova, Hana
Hughes, Scott J.
Barone, Eleonora
Testa, Andrea
Bauer, Sophie
Wright, Jane
Brand, Matthias
Ciulli, Alessio
Winter, Georg E.
author_facet Hanzl, Alexander
Casement, Ryan
Imrichova, Hana
Hughes, Scott J.
Barone, Eleonora
Testa, Andrea
Bauer, Sophie
Wright, Jane
Brand, Matthias
Ciulli, Alessio
Winter, Georg E.
author_sort Hanzl, Alexander
collection PubMed
description Targeted protein degradation is a novel pharmacology established by drugs that recruit target proteins to E3 ubiquitin ligases. Based on the structure of the degrader and the target, different E3 interfaces are critically involved, thus forming defined “functional hotspots”. Understanding disruptive mutations in functional hotspots informs on the architecture of the assembly, and highlights residues susceptible to acquire resistance phenotypes. Here, we employ haploid genetics to show that hotspot mutations cluster in substrate receptors of hijacked ligases, where mutation type and frequency correlate with gene essentiality. Intersection with deep mutational scanning revealed hotspots that are conserved or specific for chemically distinct degraders and targets. Biophysical and structural validation suggests that hotspot mutations frequently converge on altered ternary complex assembly. Moreover, we validated hotspots mutated in patients that relapse from degrader treatment. In sum, we present a fast and widely accessible methodology to characterize small-molecule degraders and associated resistance mechanisms.
format Online
Article
Text
id pubmed-7614256
institution National Center for Biotechnology Information
language English
publishDate 2023
record_format MEDLINE/PubMed
spelling pubmed-76142562023-03-01 Functional E3 ligase hotspots and resistance mechanisms to small-molecule degraders Hanzl, Alexander Casement, Ryan Imrichova, Hana Hughes, Scott J. Barone, Eleonora Testa, Andrea Bauer, Sophie Wright, Jane Brand, Matthias Ciulli, Alessio Winter, Georg E. Nat Chem Biol Article Targeted protein degradation is a novel pharmacology established by drugs that recruit target proteins to E3 ubiquitin ligases. Based on the structure of the degrader and the target, different E3 interfaces are critically involved, thus forming defined “functional hotspots”. Understanding disruptive mutations in functional hotspots informs on the architecture of the assembly, and highlights residues susceptible to acquire resistance phenotypes. Here, we employ haploid genetics to show that hotspot mutations cluster in substrate receptors of hijacked ligases, where mutation type and frequency correlate with gene essentiality. Intersection with deep mutational scanning revealed hotspots that are conserved or specific for chemically distinct degraders and targets. Biophysical and structural validation suggests that hotspot mutations frequently converge on altered ternary complex assembly. Moreover, we validated hotspots mutated in patients that relapse from degrader treatment. In sum, we present a fast and widely accessible methodology to characterize small-molecule degraders and associated resistance mechanisms. 2023-03 2022-11-03 /pmc/articles/PMC7614256/ /pubmed/36329119 http://dx.doi.org/10.1038/s41589-022-01177-2 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/) International license.
spellingShingle Article
Hanzl, Alexander
Casement, Ryan
Imrichova, Hana
Hughes, Scott J.
Barone, Eleonora
Testa, Andrea
Bauer, Sophie
Wright, Jane
Brand, Matthias
Ciulli, Alessio
Winter, Georg E.
Functional E3 ligase hotspots and resistance mechanisms to small-molecule degraders
title Functional E3 ligase hotspots and resistance mechanisms to small-molecule degraders
title_full Functional E3 ligase hotspots and resistance mechanisms to small-molecule degraders
title_fullStr Functional E3 ligase hotspots and resistance mechanisms to small-molecule degraders
title_full_unstemmed Functional E3 ligase hotspots and resistance mechanisms to small-molecule degraders
title_short Functional E3 ligase hotspots and resistance mechanisms to small-molecule degraders
title_sort functional e3 ligase hotspots and resistance mechanisms to small-molecule degraders
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7614256/
https://www.ncbi.nlm.nih.gov/pubmed/36329119
http://dx.doi.org/10.1038/s41589-022-01177-2
work_keys_str_mv AT hanzlalexander functionale3ligasehotspotsandresistancemechanismstosmallmoleculedegraders
AT casementryan functionale3ligasehotspotsandresistancemechanismstosmallmoleculedegraders
AT imrichovahana functionale3ligasehotspotsandresistancemechanismstosmallmoleculedegraders
AT hughesscottj functionale3ligasehotspotsandresistancemechanismstosmallmoleculedegraders
AT baroneeleonora functionale3ligasehotspotsandresistancemechanismstosmallmoleculedegraders
AT testaandrea functionale3ligasehotspotsandresistancemechanismstosmallmoleculedegraders
AT bauersophie functionale3ligasehotspotsandresistancemechanismstosmallmoleculedegraders
AT wrightjane functionale3ligasehotspotsandresistancemechanismstosmallmoleculedegraders
AT brandmatthias functionale3ligasehotspotsandresistancemechanismstosmallmoleculedegraders
AT ciullialessio functionale3ligasehotspotsandresistancemechanismstosmallmoleculedegraders
AT wintergeorge functionale3ligasehotspotsandresistancemechanismstosmallmoleculedegraders