Cargando…
SNELM: SqueezeNet-Guided ELM for COVID-19 Recognition
(Aim) The COVID-19 has caused 6.26 million deaths and 522.06 million confirmed cases till 17/May/2022. Chest computed tomography is a precise way to help clinicians diagnose COVID-19 patients. (Method) Two datasets are chosen for this study. The multiple-way data augmentation, including speckle nois...
Autores principales: | Zhang, Yudong, Attique Khan, Muhammad, Zhu, Ziquan, Wang, Shuihua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7614503/ https://www.ncbi.nlm.nih.gov/pubmed/37155222 http://dx.doi.org/10.32604/csse.2023.034172 |
Ejemplares similares
-
Two-Stage Intelligent DarkNet-SqueezeNet Architecture-Based Framework for Multiclass Rice Grain Variety Identification
por: Fatima, Maryam, et al.
Publicado: (2022) -
Real-Time Vehicle Make and Model Recognition with the Residual SqueezeNet Architecture
por: Lee, Hyo Jong, et al.
Publicado: (2019) -
Modified SqueezeNet Architecture for Parkinson’s Disease Detection Based on Keypress Data
por: Bernardo, Lucas Salvador, et al.
Publicado: (2022) -
COVIDiagnosis-Net: Deep Bayes-SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray images
por: Ucar, Ferhat, et al.
Publicado: (2020) -
A Dual Neural Architecture Combined SqueezeNet with OctConv for LiDAR Data Classification
por: Wang, Aili, et al.
Publicado: (2019)