Cargando…
Causal inference in survival analysis using longitudinal observational data: Sequential trials and marginal structural models
Longitudinal observational data on patients can be used to investigate causal effects of time-varying treatments on time-to-event outcomes. Several methods have been developed for estimating such effects by controlling for the time-dependent confounding that typically occurs. The most commonly used...
Autores principales: | Keogh, Ruth H., Gran, Jon Michael, Seaman, Shaun R., Davies, Gwyneth, Vansteelandt, Stijn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7614580/ https://www.ncbi.nlm.nih.gov/pubmed/37086186 http://dx.doi.org/10.1002/sim.9718 |
Ejemplares similares
-
Simulating longitudinal data from marginal structural models using the additive hazard model [Image: see text]
por: Keogh, Ruth H., et al.
Publicado: (2021) -
Adjusting for time‐varying confounders in survival analysis using structural nested cumulative survival time models
por: Seaman, Shaun, et al.
Publicado: (2019) -
Using generalized linear models to implement g-estimation for survival data with time-varying confounding
por: Seaman, Shaun R., et al.
Publicado: (2021) -
Commentary: The formal approach to quantitative causal inference in epidemiology: misguided or misrepresented?
por: Daniel, Rhian M, et al.
Publicado: (2016) -
Causal inference concepts applied to three observational studies in the context of vaccine development: from theory to practice
por: Gvozdenović, Emilia, et al.
Publicado: (2021)