Cargando…
Integrated analysis reveals the protective mechanism and therapeutic potential of hyperbaric oxygen against pulmonary fibrosis
Idiopathic pulmonary fibrosis (IPF) is a dreadful, chronic, and irreversibly progressive disease leading to death with a few effective treatments. Our previous study suggested that repetitive hyperbaric oxygen (HBO) treatment alleviates bleomycin-induced pulmonary fibrosis in mice. Here, we investig...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Chongqing Medical University
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7614583/ https://www.ncbi.nlm.nih.gov/pubmed/37251287 http://dx.doi.org/10.1016/j.gendis.2022.08.012 |
_version_ | 1783605623154278400 |
---|---|
author | Yuan, Yuan Qiao, Guoqiang Zhou, Jiajiao Zhou, Yilu Li, Yali Li, Xia Jiang, Zhenglin Wang, Yihua |
author_facet | Yuan, Yuan Qiao, Guoqiang Zhou, Jiajiao Zhou, Yilu Li, Yali Li, Xia Jiang, Zhenglin Wang, Yihua |
author_sort | Yuan, Yuan |
collection | PubMed |
description | Idiopathic pulmonary fibrosis (IPF) is a dreadful, chronic, and irreversibly progressive disease leading to death with a few effective treatments. Our previous study suggested that repetitive hyperbaric oxygen (HBO) treatment alleviates bleomycin-induced pulmonary fibrosis in mice. Here, we investigated the protective mechanism of HBO treatment against pulmonary fibrosis using an integrated approach. Analyzing publicly available expression data from the mouse model of bleomycin-induced pulmonary fibrosis as well as IPF patients, several potential mechanisms of relevance to IPF pathology were identified, including increased epithelial-to-mesenchymal transition (EMT) and glycolysis. High EMT or glycolysis scores in bronchoalveolar lavage were strong independent predictors of mortality in multivariate analysis. These processes were potentially driven by hypoxia and blocked by HBO treatment. Together, these data support HBO treatment as a viable strategy against pulmonary fibrosis. |
format | Online Article Text |
id | pubmed-7614583 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Chongqing Medical University |
record_format | MEDLINE/PubMed |
spelling | pubmed-76145832023-05-29 Integrated analysis reveals the protective mechanism and therapeutic potential of hyperbaric oxygen against pulmonary fibrosis Yuan, Yuan Qiao, Guoqiang Zhou, Jiajiao Zhou, Yilu Li, Yali Li, Xia Jiang, Zhenglin Wang, Yihua Genes Dis Full Length Article Idiopathic pulmonary fibrosis (IPF) is a dreadful, chronic, and irreversibly progressive disease leading to death with a few effective treatments. Our previous study suggested that repetitive hyperbaric oxygen (HBO) treatment alleviates bleomycin-induced pulmonary fibrosis in mice. Here, we investigated the protective mechanism of HBO treatment against pulmonary fibrosis using an integrated approach. Analyzing publicly available expression data from the mouse model of bleomycin-induced pulmonary fibrosis as well as IPF patients, several potential mechanisms of relevance to IPF pathology were identified, including increased epithelial-to-mesenchymal transition (EMT) and glycolysis. High EMT or glycolysis scores in bronchoalveolar lavage were strong independent predictors of mortality in multivariate analysis. These processes were potentially driven by hypoxia and blocked by HBO treatment. Together, these data support HBO treatment as a viable strategy against pulmonary fibrosis. Chongqing Medical University 2022-09-05 /pmc/articles/PMC7614583/ /pubmed/37251287 http://dx.doi.org/10.1016/j.gendis.2022.08.012 Text en © 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Full Length Article Yuan, Yuan Qiao, Guoqiang Zhou, Jiajiao Zhou, Yilu Li, Yali Li, Xia Jiang, Zhenglin Wang, Yihua Integrated analysis reveals the protective mechanism and therapeutic potential of hyperbaric oxygen against pulmonary fibrosis |
title | Integrated analysis reveals the protective mechanism and therapeutic potential of hyperbaric oxygen against pulmonary fibrosis |
title_full | Integrated analysis reveals the protective mechanism and therapeutic potential of hyperbaric oxygen against pulmonary fibrosis |
title_fullStr | Integrated analysis reveals the protective mechanism and therapeutic potential of hyperbaric oxygen against pulmonary fibrosis |
title_full_unstemmed | Integrated analysis reveals the protective mechanism and therapeutic potential of hyperbaric oxygen against pulmonary fibrosis |
title_short | Integrated analysis reveals the protective mechanism and therapeutic potential of hyperbaric oxygen against pulmonary fibrosis |
title_sort | integrated analysis reveals the protective mechanism and therapeutic potential of hyperbaric oxygen against pulmonary fibrosis |
topic | Full Length Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7614583/ https://www.ncbi.nlm.nih.gov/pubmed/37251287 http://dx.doi.org/10.1016/j.gendis.2022.08.012 |
work_keys_str_mv | AT yuanyuan integratedanalysisrevealstheprotectivemechanismandtherapeuticpotentialofhyperbaricoxygenagainstpulmonaryfibrosis AT qiaoguoqiang integratedanalysisrevealstheprotectivemechanismandtherapeuticpotentialofhyperbaricoxygenagainstpulmonaryfibrosis AT zhoujiajiao integratedanalysisrevealstheprotectivemechanismandtherapeuticpotentialofhyperbaricoxygenagainstpulmonaryfibrosis AT zhouyilu integratedanalysisrevealstheprotectivemechanismandtherapeuticpotentialofhyperbaricoxygenagainstpulmonaryfibrosis AT liyali integratedanalysisrevealstheprotectivemechanismandtherapeuticpotentialofhyperbaricoxygenagainstpulmonaryfibrosis AT lixia integratedanalysisrevealstheprotectivemechanismandtherapeuticpotentialofhyperbaricoxygenagainstpulmonaryfibrosis AT jiangzhenglin integratedanalysisrevealstheprotectivemechanismandtherapeuticpotentialofhyperbaricoxygenagainstpulmonaryfibrosis AT wangyihua integratedanalysisrevealstheprotectivemechanismandtherapeuticpotentialofhyperbaricoxygenagainstpulmonaryfibrosis |