Cargando…
Predicting prime editing efficiency and product purity by deep learning
Prime editing is a versatile genome editing tool but requires experimental optimization of the prime editing guide RNA (pegRNA) to achieve high editing efficiency. Here, we conducted a high-throughput screen to analyze prime editing outcomes of 92,423 pegRNAs on a highly diverse set of 13,349 human...
Autores principales: | Mathis, Nicolas, Allam, Ahmed, Kissling, Lucas, Marquart, Kim Fabiano, Schmidheini, Lukas, Solari, Cristina, Balázs, Zsolt, Krauthammer, Michael, Schwank, Gerald |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7614945/ https://www.ncbi.nlm.nih.gov/pubmed/36646933 http://dx.doi.org/10.1038/s41587-022-01613-7 |
Ejemplares similares
-
Replacing the SpCas9 HNH domain by deaminases generates compact base editors with an alternative targeting scope
por: Villiger, Lukas, et al.
Publicado: (2021) -
Predicting base editing outcomes with an attention-based deep learning algorithm trained on high-throughput target library screens
por: Marquart, Kim F., et al.
Publicado: (2021) -
High-purity production and precise editing of DNA base editing ribonucleoproteins
por: Jang, Hyeon-Ki, et al.
Publicado: (2021) -
Peptide fusion improves prime editing efficiency
por: Velimirovic, Minja, et al.
Publicado: (2022) -
AttentionDDI: Siamese attention-based deep learning method for drug–drug interaction predictions
por: Schwarz, Kyriakos, et al.
Publicado: (2021)