Cargando…
Combining chains of Bayesian models with Markov melding
A challenge for practitioners of Bayesian inference is specifying a model that incorporates multiple relevant, heterogeneous data sets. It may be easier to instead specify distinct submodels for each source of data, then join the submodels together. We consider chains of submodels, where submodels d...
Autores principales: | Manderson, Andrew A., Goudie, Robert J. B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7614958/ https://www.ncbi.nlm.nih.gov/pubmed/37587923 http://dx.doi.org/10.1214/22-BA1327 |
Ejemplares similares
-
A numerically stable algorithm for integrating Bayesian models using Markov melding
por: Manderson, Andrew A., et al.
Publicado: (2022) -
Bayesian melding for estimating uncertainty in national HIV prevalence estimates
por: Alkema, L, et al.
Publicado: (2008) -
Identifying influential observations in Bayesian models by using Markov chain Monte Carlo
por: Jackson, Dan, et al.
Publicado: (2012) -
Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference
por: Gamerman, Dani, et al.
Publicado: (2006) -
Bayesian Genome Assembly and Assessment by Markov Chain Monte Carlo Sampling
por: Howison, Mark, et al.
Publicado: (2014)