Cargando…
Hi-BEHRT: Hierarchical Transformer-Based Model for Accurate Prediction of Clinical Events Using Multimodal Longitudinal Electronic Health Records
—Electronic health records (EHR) represent a holistic overview of patients’ trajectories. Their increasing availability has fueled new hopes to leverage them and develop accurate risk prediction models for a wide range of diseases. Given the complex interrelationships of medical records and patient...
Autores principales: | Li, Yikuan, Mamouei, Mohammad, Salimi-Khorshidi, Gholamreza, Rao, Shishir, Hassaine, Abdelaali, Canoy, Dexter, Lukasiewicz, Thomas, Rahimi, Kazem |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7615082/ https://www.ncbi.nlm.nih.gov/pubmed/36427286 http://dx.doi.org/10.1109/JBHI.2022.3224727 |
Ejemplares similares
-
BEHRT: Transformer for Electronic Health Records
por: Li, Yikuan, et al.
Publicado: (2020) -
Validation of risk prediction models applied to longitudinal electronic health record data for the prediction of major cardiovascular events in the presence of data shifts
por: Li, Yikuan, et al.
Publicado: (2022) -
Deep Bayesian Gaussian processes for uncertainty estimation in electronic health records
por: Li, Yikuan, et al.
Publicado: (2021) -
Publisher Correction: Deep Bayesian Gaussian processes for uncertainty estimation in electronic health records
por: Li, Yikuan, et al.
Publicado: (2021) -
Systolic Blood Pressure and Cardiovascular Risk in Patients With Diabetes: A Prospective Cohort Study
por: Rao, Shishir, et al.
Publicado: (2022)