Cargando…
Missing data: A statistical framework for practice
Missing data are ubiquitous in medical research, yet there is still uncertainty over when restricting to the complete records is likely to be acceptable, when more complex methods (e.g. maximum likelihood, multiple imputation and Bayesian methods) should be used, how they relate to each other and th...
Autores principales: | Carpenter, James R., Smuk, Melanie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7615108/ https://www.ncbi.nlm.nih.gov/pubmed/33624862 http://dx.doi.org/10.1002/bimj.202000196 |
Ejemplares similares
-
What impact do assumptions about missing data have on conclusions? A practical sensitivity analysis for a cancer survival registry
por: Smuk, M., et al.
Publicado: (2017) -
Erratum to: What impact do assumptions about missing data have on conclusions? a practical sensitivity analysis for a cancer survival registry
por: Smuk, M., et al.
Publicado: (2017) -
Framework for the treatment and reporting of missing data in observational studies: The Treatment And Reporting of Missing data in Observational Studies framework
por: Lee, Katherine J., et al.
Publicado: (2021) -
A Bayesian framework for health economic evaluation in studies with missing data
por: Mason, Alexina J., et al.
Publicado: (2018) -
A framework for handling missing accelerometer outcome data in trials
por: Tackney, Mia S., et al.
Publicado: (2021)