Cargando…
Deep Learning-Based Long Term Mortality Prediction in the National Lung Screening Trial
In this study, the long-term mortality in the National Lung Screening Trial (NLST) was investigated using a deep learning-based method. Binary classification of the non-lung-cancer mortality (i.e. cardiovascular and respiratory mortality) was performed using neural network models centered around a 3...
Autores principales: | Lu, Yaozhi, Aslani, Shahab, Emberton, Mark, Alexander, Daniel C., Jacob, Joseph |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7615166/ https://www.ncbi.nlm.nih.gov/pubmed/37810591 http://dx.doi.org/10.1109/ACCESS.2022.3161954 |
Ejemplares similares
-
A hybrid CNN-RNN approach for survival analysis in a Lung Cancer Screening study
por: Lu, Yaozhi, et al.
Publicado: (2023) -
Deep Learning to Assess Long-term Mortality From Chest Radiographs
por: Lu, Michael T., et al.
Publicado: (2019) -
Utilisation of deep learning for COVID-19 diagnosis
por: Aslani, S., et al.
Publicado: (2023) -
Incidence Lung Cancer after a Negative CT Screening in the National Lung Screening Trial: Deep Learning-Based Detection of Missed Lung Cancers
por: Cho, Jungheum, et al.
Publicado: (2020) -
Lung cancer incidence and mortality with extended follow-up in the National LungScreening Trial
por: Frille, Armin, et al.
Publicado: (2020)