Cargando…
MisMatch: Calibrated Segmentation via Consistency on Differential Morphological Feature Perturbations with Limited Labels
Semi-supervised learning (SSL) is a promising machine learning paradigm to address the ubiquitous issue of label scarcity in medical imaging. The state-of-the-art SSL methods in image classification utilise consistency regularisation to learn unlabelled predictions which are invariant to input level...
Autores principales: | Xu, Mou-Cheng, Zhou, Yukun, Jin, Chen, de Groot, Marius, Alexander, Daniel C., Oxtoby, Neil P., Jacob, Joseph |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7615173/ https://www.ncbi.nlm.nih.gov/pubmed/37155408 http://dx.doi.org/10.1109/TMI.2023.3273158 |
Ejemplares similares
-
International Symposium on Mis-matching of Welds : Performance of Strength Mis-matched Welded or Bonded Joints
por: Koçak, M, et al.
Publicado: (1994) -
Polyp segmentation with consistency training and continuous update of pseudo-label
por: Park, Hyun-Cheol, et al.
Publicado: (2022) -
Bifurcation matching for consistent cerebral vessel labeling in CTA of stroke patients
por: Rist, Leonhard, et al.
Publicado: (2022) -
EFORT recommendations for off-label use, mix & match and mismatch in hip and knee arthroplasty
por: Tucker, Keith, et al.
Publicado: (2021) -
Perturbing the consistency of auditory feedback in speech
por: Nault, Daniel R., et al.
Publicado: (2022)