Cargando…
Marginal and Conditional Confounding Using Logits
This article presents two ways of quantifying confounding using logistic response models for binary outcomes. Drawing on the distinction between marginal and conditional odds ratios in statistics, we define two corresponding measures of confounding (marginal and conditional) that can be recovered fr...
Autores principales: | Karlson, Kristian Bernt, Popham, Frank, Holm, Anders |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7615235/ https://www.ncbi.nlm.nih.gov/pubmed/37873547 http://dx.doi.org/10.1177/0049124121995548 |
Ejemplares similares
-
A New Logit-Based Gini Coefficient
por: Ryu, Hang K., et al.
Publicado: (2019) -
Transformation of Rasch model logits for enhanced interpretability
por: Ekstrand, Joakim, et al.
Publicado: (2022) -
Logit models from economics and other fields
por: Cramer, J S
Publicado: (2003) -
Street Choice Logit Model for Visitors in Shopping Districts
por: Kawada, Ko, et al.
Publicado: (2014) -
Machine unlearning: linear filtration for logit-based classifiers
por: Baumhauer, Thomas, et al.
Publicado: (2022)