Cargando…

On the generalizability of diffusion MRI signal representations across acquisition parameters, sequences and tissue types: Chronicles of the MEMENTO challenge

Diffusion MRI (dMRI) has become an invaluable tool to assess the microstructural organization of brain tissue. Depending on the specific acquisition settings, the dMRI signal encodes specific properties of the underlying diffusion process. In the last two decades, several signal representations have...

Descripción completa

Detalles Bibliográficos
Autores principales: De Luca, Alberto, Ianus, Andrada, Leemans, Alexander, Palombo, Marco, Shemesh, Noam, Zhang, Hui, Alexander, Daniel C., Nilsson, Markus, Froeling, Martijn, Biessels, Geert-Jan, Zucchelli, Mauro, Frigo, Matteo, Albay, Enes, Sedlar, Sara, Alimi, Abib, Deslauriers-Gauthier, Samuel, Deriche, Rachid, Fick, Rutger, Afzali, Maryam, Pieciak, Tomasz, Bogusz, Fabian, Aja-Fernández, Santiago, Özarslan, Evren, Jones, Derek K., Chen, Haoze, Jin, Mingwu, Zhang, Zhijie, Wang, Fengxiang, Nath, Vishwesh, Parvathaneni, Prasanna, Morez, Jan, Sijbers, Jan, Jeurissen, Ben, Fadnavis, Shreyas, Endres, Stefan, Rokem, Ariel, Garyfallidis, Eleftherios, Sanchez, Irina, Prchkovska, Vesna, Rodrigues, Paulo, Landman, Bennet A., Schilling, Kurt G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7615259/
https://www.ncbi.nlm.nih.gov/pubmed/34237442
http://dx.doi.org/10.1016/j.neuroimage.2021.118367
_version_ 1783605721002147840
author De Luca, Alberto
Ianus, Andrada
Leemans, Alexander
Palombo, Marco
Shemesh, Noam
Zhang, Hui
Alexander, Daniel C.
Nilsson, Markus
Froeling, Martijn
Biessels, Geert-Jan
Zucchelli, Mauro
Frigo, Matteo
Albay, Enes
Sedlar, Sara
Alimi, Abib
Deslauriers-Gauthier, Samuel
Deriche, Rachid
Fick, Rutger
Afzali, Maryam
Pieciak, Tomasz
Bogusz, Fabian
Aja-Fernández, Santiago
Özarslan, Evren
Jones, Derek K.
Chen, Haoze
Jin, Mingwu
Zhang, Zhijie
Wang, Fengxiang
Nath, Vishwesh
Parvathaneni, Prasanna
Morez, Jan
Sijbers, Jan
Jeurissen, Ben
Fadnavis, Shreyas
Endres, Stefan
Rokem, Ariel
Garyfallidis, Eleftherios
Sanchez, Irina
Prchkovska, Vesna
Rodrigues, Paulo
Landman, Bennet A.
Schilling, Kurt G.
author_facet De Luca, Alberto
Ianus, Andrada
Leemans, Alexander
Palombo, Marco
Shemesh, Noam
Zhang, Hui
Alexander, Daniel C.
Nilsson, Markus
Froeling, Martijn
Biessels, Geert-Jan
Zucchelli, Mauro
Frigo, Matteo
Albay, Enes
Sedlar, Sara
Alimi, Abib
Deslauriers-Gauthier, Samuel
Deriche, Rachid
Fick, Rutger
Afzali, Maryam
Pieciak, Tomasz
Bogusz, Fabian
Aja-Fernández, Santiago
Özarslan, Evren
Jones, Derek K.
Chen, Haoze
Jin, Mingwu
Zhang, Zhijie
Wang, Fengxiang
Nath, Vishwesh
Parvathaneni, Prasanna
Morez, Jan
Sijbers, Jan
Jeurissen, Ben
Fadnavis, Shreyas
Endres, Stefan
Rokem, Ariel
Garyfallidis, Eleftherios
Sanchez, Irina
Prchkovska, Vesna
Rodrigues, Paulo
Landman, Bennet A.
Schilling, Kurt G.
author_sort De Luca, Alberto
collection PubMed
description Diffusion MRI (dMRI) has become an invaluable tool to assess the microstructural organization of brain tissue. Depending on the specific acquisition settings, the dMRI signal encodes specific properties of the underlying diffusion process. In the last two decades, several signal representations have been proposed to fit the dMRI signal and decode such properties. Most methods, however, are tested and developed on a limited amount of data, and their applicability to other acquisition schemes remains unknown. With this work, we aimed to shed light on the generalizability of existing dMRI signal representations to different diffusion encoding parameters and brain tissue types. To this end, we organized a community challenge - named MEMENTO, making available the same datasets for fair comparisons across algorithms and techniques. We considered two state-of-the-art diffusion datasets, including single-diffusion-encoding (SDE) spin-echo data from a human brain with over 3820 unique diffusion weightings (the MASSIVE dataset), and double (oscillating) diffusion encoding data (DDE/DODE) of a mouse brain including over 2520 unique data points. A subset of the data sampled in 5 different voxels was openly distributed, and the challenge participants were asked to predict the remaining part of the data. After one year, eight participant teams submitted a total of 80 signal fits. For each submission, we evaluated the mean squared error, the variance of the prediction error and the Bayesian information criteria. The received submissions predicted either multi-shell SDE data (37%) or DODE data (22%), followed by cartesian SDE data (19%) and DDE (18%). Most submissions predicted the signals measured with SDE remarkably well, with the exception of low and very strong diffusion weightings. The prediction of DDE and DODE data seemed more challenging, likely because none of the submissions explicitly accounted for diffusion time and frequency. Next to the choice of the model, decisions on fit procedure and hyperparameters play a major role in the prediction performance, highlighting the importance of optimizing and reporting such choices. This work is a community effort to highlight strength and limitations of the field at representing dMRI acquired with trending encoding schemes, gaining insights into how different models generalize to different tissue types and fiber configurations over a large range of diffusion encodings.
format Online
Article
Text
id pubmed-7615259
institution National Center for Biotechnology Information
language English
publishDate 2021
record_format MEDLINE/PubMed
spelling pubmed-76152592023-10-28 On the generalizability of diffusion MRI signal representations across acquisition parameters, sequences and tissue types: Chronicles of the MEMENTO challenge De Luca, Alberto Ianus, Andrada Leemans, Alexander Palombo, Marco Shemesh, Noam Zhang, Hui Alexander, Daniel C. Nilsson, Markus Froeling, Martijn Biessels, Geert-Jan Zucchelli, Mauro Frigo, Matteo Albay, Enes Sedlar, Sara Alimi, Abib Deslauriers-Gauthier, Samuel Deriche, Rachid Fick, Rutger Afzali, Maryam Pieciak, Tomasz Bogusz, Fabian Aja-Fernández, Santiago Özarslan, Evren Jones, Derek K. Chen, Haoze Jin, Mingwu Zhang, Zhijie Wang, Fengxiang Nath, Vishwesh Parvathaneni, Prasanna Morez, Jan Sijbers, Jan Jeurissen, Ben Fadnavis, Shreyas Endres, Stefan Rokem, Ariel Garyfallidis, Eleftherios Sanchez, Irina Prchkovska, Vesna Rodrigues, Paulo Landman, Bennet A. Schilling, Kurt G. Neuroimage Article Diffusion MRI (dMRI) has become an invaluable tool to assess the microstructural organization of brain tissue. Depending on the specific acquisition settings, the dMRI signal encodes specific properties of the underlying diffusion process. In the last two decades, several signal representations have been proposed to fit the dMRI signal and decode such properties. Most methods, however, are tested and developed on a limited amount of data, and their applicability to other acquisition schemes remains unknown. With this work, we aimed to shed light on the generalizability of existing dMRI signal representations to different diffusion encoding parameters and brain tissue types. To this end, we organized a community challenge - named MEMENTO, making available the same datasets for fair comparisons across algorithms and techniques. We considered two state-of-the-art diffusion datasets, including single-diffusion-encoding (SDE) spin-echo data from a human brain with over 3820 unique diffusion weightings (the MASSIVE dataset), and double (oscillating) diffusion encoding data (DDE/DODE) of a mouse brain including over 2520 unique data points. A subset of the data sampled in 5 different voxels was openly distributed, and the challenge participants were asked to predict the remaining part of the data. After one year, eight participant teams submitted a total of 80 signal fits. For each submission, we evaluated the mean squared error, the variance of the prediction error and the Bayesian information criteria. The received submissions predicted either multi-shell SDE data (37%) or DODE data (22%), followed by cartesian SDE data (19%) and DDE (18%). Most submissions predicted the signals measured with SDE remarkably well, with the exception of low and very strong diffusion weightings. The prediction of DDE and DODE data seemed more challenging, likely because none of the submissions explicitly accounted for diffusion time and frequency. Next to the choice of the model, decisions on fit procedure and hyperparameters play a major role in the prediction performance, highlighting the importance of optimizing and reporting such choices. This work is a community effort to highlight strength and limitations of the field at representing dMRI acquired with trending encoding schemes, gaining insights into how different models generalize to different tissue types and fiber configurations over a large range of diffusion encodings. 2021-10-15 2021-07-06 /pmc/articles/PMC7615259/ /pubmed/34237442 http://dx.doi.org/10.1016/j.neuroimage.2021.118367 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a BY 4.0 (https://creativecommons.org/licenses/by/4.0/) International license.
spellingShingle Article
De Luca, Alberto
Ianus, Andrada
Leemans, Alexander
Palombo, Marco
Shemesh, Noam
Zhang, Hui
Alexander, Daniel C.
Nilsson, Markus
Froeling, Martijn
Biessels, Geert-Jan
Zucchelli, Mauro
Frigo, Matteo
Albay, Enes
Sedlar, Sara
Alimi, Abib
Deslauriers-Gauthier, Samuel
Deriche, Rachid
Fick, Rutger
Afzali, Maryam
Pieciak, Tomasz
Bogusz, Fabian
Aja-Fernández, Santiago
Özarslan, Evren
Jones, Derek K.
Chen, Haoze
Jin, Mingwu
Zhang, Zhijie
Wang, Fengxiang
Nath, Vishwesh
Parvathaneni, Prasanna
Morez, Jan
Sijbers, Jan
Jeurissen, Ben
Fadnavis, Shreyas
Endres, Stefan
Rokem, Ariel
Garyfallidis, Eleftherios
Sanchez, Irina
Prchkovska, Vesna
Rodrigues, Paulo
Landman, Bennet A.
Schilling, Kurt G.
On the generalizability of diffusion MRI signal representations across acquisition parameters, sequences and tissue types: Chronicles of the MEMENTO challenge
title On the generalizability of diffusion MRI signal representations across acquisition parameters, sequences and tissue types: Chronicles of the MEMENTO challenge
title_full On the generalizability of diffusion MRI signal representations across acquisition parameters, sequences and tissue types: Chronicles of the MEMENTO challenge
title_fullStr On the generalizability of diffusion MRI signal representations across acquisition parameters, sequences and tissue types: Chronicles of the MEMENTO challenge
title_full_unstemmed On the generalizability of diffusion MRI signal representations across acquisition parameters, sequences and tissue types: Chronicles of the MEMENTO challenge
title_short On the generalizability of diffusion MRI signal representations across acquisition parameters, sequences and tissue types: Chronicles of the MEMENTO challenge
title_sort on the generalizability of diffusion mri signal representations across acquisition parameters, sequences and tissue types: chronicles of the memento challenge
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7615259/
https://www.ncbi.nlm.nih.gov/pubmed/34237442
http://dx.doi.org/10.1016/j.neuroimage.2021.118367
work_keys_str_mv AT delucaalberto onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge
AT ianusandrada onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge
AT leemansalexander onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge
AT palombomarco onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge
AT shemeshnoam onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge
AT zhanghui onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge
AT alexanderdanielc onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge
AT nilssonmarkus onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge
AT froelingmartijn onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge
AT biesselsgeertjan onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge
AT zucchellimauro onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge
AT frigomatteo onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge
AT albayenes onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge
AT sedlarsara onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge
AT alimiabib onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge
AT deslauriersgauthiersamuel onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge
AT dericherachid onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge
AT fickrutger onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge
AT afzalimaryam onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge
AT pieciaktomasz onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge
AT boguszfabian onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge
AT ajafernandezsantiago onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge
AT ozarslanevren onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge
AT jonesderekk onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge
AT chenhaoze onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge
AT jinmingwu onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge
AT zhangzhijie onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge
AT wangfengxiang onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge
AT nathvishwesh onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge
AT parvathaneniprasanna onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge
AT morezjan onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge
AT sijbersjan onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge
AT jeurissenben onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge
AT fadnavisshreyas onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge
AT endresstefan onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge
AT rokemariel onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge
AT garyfallidiseleftherios onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge
AT sanchezirina onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge
AT prchkovskavesna onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge
AT rodriguespaulo onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge
AT landmanbenneta onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge
AT schillingkurtg onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge