Cargando…
On the generalizability of diffusion MRI signal representations across acquisition parameters, sequences and tissue types: Chronicles of the MEMENTO challenge
Diffusion MRI (dMRI) has become an invaluable tool to assess the microstructural organization of brain tissue. Depending on the specific acquisition settings, the dMRI signal encodes specific properties of the underlying diffusion process. In the last two decades, several signal representations have...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7615259/ https://www.ncbi.nlm.nih.gov/pubmed/34237442 http://dx.doi.org/10.1016/j.neuroimage.2021.118367 |
_version_ | 1783605721002147840 |
---|---|
author | De Luca, Alberto Ianus, Andrada Leemans, Alexander Palombo, Marco Shemesh, Noam Zhang, Hui Alexander, Daniel C. Nilsson, Markus Froeling, Martijn Biessels, Geert-Jan Zucchelli, Mauro Frigo, Matteo Albay, Enes Sedlar, Sara Alimi, Abib Deslauriers-Gauthier, Samuel Deriche, Rachid Fick, Rutger Afzali, Maryam Pieciak, Tomasz Bogusz, Fabian Aja-Fernández, Santiago Özarslan, Evren Jones, Derek K. Chen, Haoze Jin, Mingwu Zhang, Zhijie Wang, Fengxiang Nath, Vishwesh Parvathaneni, Prasanna Morez, Jan Sijbers, Jan Jeurissen, Ben Fadnavis, Shreyas Endres, Stefan Rokem, Ariel Garyfallidis, Eleftherios Sanchez, Irina Prchkovska, Vesna Rodrigues, Paulo Landman, Bennet A. Schilling, Kurt G. |
author_facet | De Luca, Alberto Ianus, Andrada Leemans, Alexander Palombo, Marco Shemesh, Noam Zhang, Hui Alexander, Daniel C. Nilsson, Markus Froeling, Martijn Biessels, Geert-Jan Zucchelli, Mauro Frigo, Matteo Albay, Enes Sedlar, Sara Alimi, Abib Deslauriers-Gauthier, Samuel Deriche, Rachid Fick, Rutger Afzali, Maryam Pieciak, Tomasz Bogusz, Fabian Aja-Fernández, Santiago Özarslan, Evren Jones, Derek K. Chen, Haoze Jin, Mingwu Zhang, Zhijie Wang, Fengxiang Nath, Vishwesh Parvathaneni, Prasanna Morez, Jan Sijbers, Jan Jeurissen, Ben Fadnavis, Shreyas Endres, Stefan Rokem, Ariel Garyfallidis, Eleftherios Sanchez, Irina Prchkovska, Vesna Rodrigues, Paulo Landman, Bennet A. Schilling, Kurt G. |
author_sort | De Luca, Alberto |
collection | PubMed |
description | Diffusion MRI (dMRI) has become an invaluable tool to assess the microstructural organization of brain tissue. Depending on the specific acquisition settings, the dMRI signal encodes specific properties of the underlying diffusion process. In the last two decades, several signal representations have been proposed to fit the dMRI signal and decode such properties. Most methods, however, are tested and developed on a limited amount of data, and their applicability to other acquisition schemes remains unknown. With this work, we aimed to shed light on the generalizability of existing dMRI signal representations to different diffusion encoding parameters and brain tissue types. To this end, we organized a community challenge - named MEMENTO, making available the same datasets for fair comparisons across algorithms and techniques. We considered two state-of-the-art diffusion datasets, including single-diffusion-encoding (SDE) spin-echo data from a human brain with over 3820 unique diffusion weightings (the MASSIVE dataset), and double (oscillating) diffusion encoding data (DDE/DODE) of a mouse brain including over 2520 unique data points. A subset of the data sampled in 5 different voxels was openly distributed, and the challenge participants were asked to predict the remaining part of the data. After one year, eight participant teams submitted a total of 80 signal fits. For each submission, we evaluated the mean squared error, the variance of the prediction error and the Bayesian information criteria. The received submissions predicted either multi-shell SDE data (37%) or DODE data (22%), followed by cartesian SDE data (19%) and DDE (18%). Most submissions predicted the signals measured with SDE remarkably well, with the exception of low and very strong diffusion weightings. The prediction of DDE and DODE data seemed more challenging, likely because none of the submissions explicitly accounted for diffusion time and frequency. Next to the choice of the model, decisions on fit procedure and hyperparameters play a major role in the prediction performance, highlighting the importance of optimizing and reporting such choices. This work is a community effort to highlight strength and limitations of the field at representing dMRI acquired with trending encoding schemes, gaining insights into how different models generalize to different tissue types and fiber configurations over a large range of diffusion encodings. |
format | Online Article Text |
id | pubmed-7615259 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
record_format | MEDLINE/PubMed |
spelling | pubmed-76152592023-10-28 On the generalizability of diffusion MRI signal representations across acquisition parameters, sequences and tissue types: Chronicles of the MEMENTO challenge De Luca, Alberto Ianus, Andrada Leemans, Alexander Palombo, Marco Shemesh, Noam Zhang, Hui Alexander, Daniel C. Nilsson, Markus Froeling, Martijn Biessels, Geert-Jan Zucchelli, Mauro Frigo, Matteo Albay, Enes Sedlar, Sara Alimi, Abib Deslauriers-Gauthier, Samuel Deriche, Rachid Fick, Rutger Afzali, Maryam Pieciak, Tomasz Bogusz, Fabian Aja-Fernández, Santiago Özarslan, Evren Jones, Derek K. Chen, Haoze Jin, Mingwu Zhang, Zhijie Wang, Fengxiang Nath, Vishwesh Parvathaneni, Prasanna Morez, Jan Sijbers, Jan Jeurissen, Ben Fadnavis, Shreyas Endres, Stefan Rokem, Ariel Garyfallidis, Eleftherios Sanchez, Irina Prchkovska, Vesna Rodrigues, Paulo Landman, Bennet A. Schilling, Kurt G. Neuroimage Article Diffusion MRI (dMRI) has become an invaluable tool to assess the microstructural organization of brain tissue. Depending on the specific acquisition settings, the dMRI signal encodes specific properties of the underlying diffusion process. In the last two decades, several signal representations have been proposed to fit the dMRI signal and decode such properties. Most methods, however, are tested and developed on a limited amount of data, and their applicability to other acquisition schemes remains unknown. With this work, we aimed to shed light on the generalizability of existing dMRI signal representations to different diffusion encoding parameters and brain tissue types. To this end, we organized a community challenge - named MEMENTO, making available the same datasets for fair comparisons across algorithms and techniques. We considered two state-of-the-art diffusion datasets, including single-diffusion-encoding (SDE) spin-echo data from a human brain with over 3820 unique diffusion weightings (the MASSIVE dataset), and double (oscillating) diffusion encoding data (DDE/DODE) of a mouse brain including over 2520 unique data points. A subset of the data sampled in 5 different voxels was openly distributed, and the challenge participants were asked to predict the remaining part of the data. After one year, eight participant teams submitted a total of 80 signal fits. For each submission, we evaluated the mean squared error, the variance of the prediction error and the Bayesian information criteria. The received submissions predicted either multi-shell SDE data (37%) or DODE data (22%), followed by cartesian SDE data (19%) and DDE (18%). Most submissions predicted the signals measured with SDE remarkably well, with the exception of low and very strong diffusion weightings. The prediction of DDE and DODE data seemed more challenging, likely because none of the submissions explicitly accounted for diffusion time and frequency. Next to the choice of the model, decisions on fit procedure and hyperparameters play a major role in the prediction performance, highlighting the importance of optimizing and reporting such choices. This work is a community effort to highlight strength and limitations of the field at representing dMRI acquired with trending encoding schemes, gaining insights into how different models generalize to different tissue types and fiber configurations over a large range of diffusion encodings. 2021-10-15 2021-07-06 /pmc/articles/PMC7615259/ /pubmed/34237442 http://dx.doi.org/10.1016/j.neuroimage.2021.118367 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a BY 4.0 (https://creativecommons.org/licenses/by/4.0/) International license. |
spellingShingle | Article De Luca, Alberto Ianus, Andrada Leemans, Alexander Palombo, Marco Shemesh, Noam Zhang, Hui Alexander, Daniel C. Nilsson, Markus Froeling, Martijn Biessels, Geert-Jan Zucchelli, Mauro Frigo, Matteo Albay, Enes Sedlar, Sara Alimi, Abib Deslauriers-Gauthier, Samuel Deriche, Rachid Fick, Rutger Afzali, Maryam Pieciak, Tomasz Bogusz, Fabian Aja-Fernández, Santiago Özarslan, Evren Jones, Derek K. Chen, Haoze Jin, Mingwu Zhang, Zhijie Wang, Fengxiang Nath, Vishwesh Parvathaneni, Prasanna Morez, Jan Sijbers, Jan Jeurissen, Ben Fadnavis, Shreyas Endres, Stefan Rokem, Ariel Garyfallidis, Eleftherios Sanchez, Irina Prchkovska, Vesna Rodrigues, Paulo Landman, Bennet A. Schilling, Kurt G. On the generalizability of diffusion MRI signal representations across acquisition parameters, sequences and tissue types: Chronicles of the MEMENTO challenge |
title | On the generalizability of diffusion MRI signal representations across acquisition parameters, sequences and tissue types: Chronicles of the MEMENTO challenge |
title_full | On the generalizability of diffusion MRI signal representations across acquisition parameters, sequences and tissue types: Chronicles of the MEMENTO challenge |
title_fullStr | On the generalizability of diffusion MRI signal representations across acquisition parameters, sequences and tissue types: Chronicles of the MEMENTO challenge |
title_full_unstemmed | On the generalizability of diffusion MRI signal representations across acquisition parameters, sequences and tissue types: Chronicles of the MEMENTO challenge |
title_short | On the generalizability of diffusion MRI signal representations across acquisition parameters, sequences and tissue types: Chronicles of the MEMENTO challenge |
title_sort | on the generalizability of diffusion mri signal representations across acquisition parameters, sequences and tissue types: chronicles of the memento challenge |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7615259/ https://www.ncbi.nlm.nih.gov/pubmed/34237442 http://dx.doi.org/10.1016/j.neuroimage.2021.118367 |
work_keys_str_mv | AT delucaalberto onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge AT ianusandrada onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge AT leemansalexander onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge AT palombomarco onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge AT shemeshnoam onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge AT zhanghui onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge AT alexanderdanielc onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge AT nilssonmarkus onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge AT froelingmartijn onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge AT biesselsgeertjan onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge AT zucchellimauro onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge AT frigomatteo onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge AT albayenes onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge AT sedlarsara onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge AT alimiabib onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge AT deslauriersgauthiersamuel onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge AT dericherachid onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge AT fickrutger onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge AT afzalimaryam onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge AT pieciaktomasz onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge AT boguszfabian onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge AT ajafernandezsantiago onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge AT ozarslanevren onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge AT jonesderekk onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge AT chenhaoze onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge AT jinmingwu onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge AT zhangzhijie onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge AT wangfengxiang onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge AT nathvishwesh onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge AT parvathaneniprasanna onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge AT morezjan onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge AT sijbersjan onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge AT jeurissenben onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge AT fadnavisshreyas onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge AT endresstefan onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge AT rokemariel onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge AT garyfallidiseleftherios onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge AT sanchezirina onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge AT prchkovskavesna onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge AT rodriguespaulo onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge AT landmanbenneta onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge AT schillingkurtg onthegeneralizabilityofdiffusionmrisignalrepresentationsacrossacquisitionparameterssequencesandtissuetypeschroniclesofthemementochallenge |