Cargando…
Multiple imputation of missing data under missing at random: including a collider as an auxiliary variable in the imputation model can induce bias
Epidemiological studies often have missing data, which are commonly handled by multiple imputation (MI). In MI, in addition to those required for the substantive analysis, imputation models often include other variables (“auxiliary variables”). Auxiliary variables that predict the partially observed...
Autores principales: | Curnow, Elinor, Tilling, Kate, Heron, Jon E., Cornish, Rosie P., Carpenter, James R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7615309/ https://www.ncbi.nlm.nih.gov/pubmed/37974561 http://dx.doi.org/10.3389/fepid.2023.1237447 |
Ejemplares similares
-
The proportion of missing data should not be used to guide decisions on multiple imputation
por: Madley-Dowd, Paul, et al.
Publicado: (2019) -
Accounting for missing data in statistical analyses: multiple imputation is not always the answer
por: Hughes, Rachael A, et al.
Publicado: (2019) -
Imputation of missing genotypes: an empirical evaluation of IMPUTE
por: Zhao, Zhenming, et al.
Publicado: (2008) -
Multiple imputation strategies for a bounded outcome variable in a competing risks
analysis
por: Curnow, Elinor, et al.
Publicado: (2021) -
Auxiliary variables in multiple imputation in regression with missing X: a warning against including too many in small sample research
por: Hardt, Jochen, et al.
Publicado: (2012)