Cargando…
Microarray analysis of aberrant microRNA expression patterns in spinal cord gliomas of different grades
MicroRNAs (miRNAs) are involved in the development of several types of tumor; however, their role in spinal gliomas remains unknown. The present study aimed to identify potentially novel spinal cord gliomas (SCG)-associated miRNAs and to characterize their roles in the development and progression of...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7640765/ https://www.ncbi.nlm.nih.gov/pubmed/33154769 http://dx.doi.org/10.3892/ol.2020.12234 |
Sumario: | MicroRNAs (miRNAs) are involved in the development of several types of tumor; however, their role in spinal gliomas remains unknown. The present study aimed to identify potentially novel spinal cord gliomas (SCG)-associated miRNAs and to characterize their roles in the development and progression of SCG. miRNA expression levels in low-grade SCG (classed as stage I–II SCG based on the World Health Organization grading system), high-grade SCG (classed as stage IV SCG based on the World Health Organization grading system) and 5 control cases were measured using a miRNA expression microarray. Subsequently, blood samples from the spinal cord of patients with differing grades of SCG were screened for differentially expressed miRNAs (DEmiRNAs). Compared with the control group, 7 upregulated and 36 downregulated miRNAs were identified in the low-grade SCG group and a total of 70 upregulated and 20 downregulated miRNAs were identified in the high-grade SCG group (P≤0.05, fold change >2). Gene Ontology analysis revealed that the regulation of cellular metabolic processes, negative regulation of biological processes and axon guidance were primarily involved. Moreover, pathway analysis showed that the target genes of DEmiRNAs were enriched in tumor-related signaling pathways, such as the MAPK and Wnt signaling pathway. The results suggest that DEmiRNAs in peripheral blood may serve as novel target markers with high specificity and sensitivity for the diagnosis of SCG. |
---|