Cargando…
The study of automatic machine learning base on radiomics of non-focus area in the first chest CT of different clinical types of COVID-19 pneumonia
To explore the possibility of predicting the clinical types of Corona-Virus-Disease-2019 (COVID-19) pneumonia by analyzing the non-focus area of the lung in the first chest CT image of patients with COVID-19 by using automatic machine learning (Auto-ML). 136 moderate and 83 severe patients were sele...
Autores principales: | Tan, Hui-Bin, Xiong, Fei, Jiang, Yuan-Liang, Huang, Wen-Cai, Wang, Ye, Li, Han-Han, You, Tao, Fu, Ting-Ting, Lu, Ran, Peng, Bi-Wen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7641115/ https://www.ncbi.nlm.nih.gov/pubmed/33144676 http://dx.doi.org/10.1038/s41598-020-76141-y |
Ejemplares similares
-
The clinical classification of patients with COVID-19 pneumonia was predicted by Radiomics using chest CT
por: Xiong, Fei, et al.
Publicado: (2021) -
Lung segmentation and automatic detection of COVID-19 using radiomic features from chest CT images
por: Zhao, Chen, et al.
Publicado: (2021) -
Machine learning-based CT radiomics model distinguishes COVID-19 from non-COVID-19 pneumonia
por: Chen, Hui Juan, et al.
Publicado: (2021) -
Automatic COVID-19 and Common-Acquired Pneumonia Diagnosis Using Chest CT Scans
por: Motta, Pedro Crosara, et al.
Publicado: (2023) -
Chest CT texture-based radiomics analysis in differentiating COVID-19 from other interstitial pneumonia
por: Caruso, Damiano, et al.
Publicado: (2021)