Cargando…

A low-bias and sensitive small RNA library preparation method using randomized splint ligation

Small RNAs are important regulators of gene expression and are involved in human development and disease. Next generation sequencing (NGS) allows for scalable, genome-wide studies of small RNA; however, current methods are challenged by low sensitivity and high bias, limiting their ability to captur...

Descripción completa

Detalles Bibliográficos
Autores principales: Maguire, Sean, Lohman, Gregory J S, Guan, Shengxi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7641310/
https://www.ncbi.nlm.nih.gov/pubmed/32496547
http://dx.doi.org/10.1093/nar/gkaa480
Descripción
Sumario:Small RNAs are important regulators of gene expression and are involved in human development and disease. Next generation sequencing (NGS) allows for scalable, genome-wide studies of small RNA; however, current methods are challenged by low sensitivity and high bias, limiting their ability to capture an accurate representation of the cellular small RNA population. Several studies have shown that this bias primarily arises during the ligation of single-strand adapters during library preparation, and that this ligation bias is magnified by 2′-O-methyl modifications (2′OMe) on the 3′ terminal nucleotide. In this study, we developed a novel library preparation process using randomized splint ligation with a cleavable adapter, a design which resolves previous challenges associated with this ligation strategy. We show that a randomized splint ligation based workflow can reduce bias and increase the sensitivity of small RNA sequencing for a wide variety of small RNAs, including microRNA (miRNA) and tRNA fragments as well as 2′OMe modified RNA, including Piwi-interacting RNA and plant miRNA. Finally, we demonstrate that this workflow detects more differentially expressed miRNA between tumorous and matched normal tissues. Overall, this library preparation process allows for highly accurate small RNA sequencing and will enable studies of 2′OMe modified RNA with new levels of detail.