Cargando…
Deep learning analysis provides accurate COVID-19 diagnosis on chest computed tomography
INTRODUCTION: Computed Tomography is an essential diagnostic tool in the management of COVID-19. Considering the large amount of examinations in high case-load scenarios, an automated tool could facilitate and save critical time in the diagnosis and risk stratification of the disease. METHODS: A nov...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7641539/ https://www.ncbi.nlm.nih.gov/pubmed/33190102 http://dx.doi.org/10.1016/j.ejrad.2020.109402 |
_version_ | 1783605936630267904 |
---|---|
author | Javor, D. Kaplan, H. Kaplan, A. Puchner, S.B. Krestan, C. Baltzer, P. |
author_facet | Javor, D. Kaplan, H. Kaplan, A. Puchner, S.B. Krestan, C. Baltzer, P. |
author_sort | Javor, D. |
collection | PubMed |
description | INTRODUCTION: Computed Tomography is an essential diagnostic tool in the management of COVID-19. Considering the large amount of examinations in high case-load scenarios, an automated tool could facilitate and save critical time in the diagnosis and risk stratification of the disease. METHODS: A novel deep learning derived machine learning (ML) classifier was developed using a simplified programming approach and an open source dataset consisting of 6868 chest CT images from 418 patients which was split into training and validation subsets. The diagnostic performance was then evaluated and compared to experienced radiologists on an independent testing dataset. Diagnostic performance metrics were calculated using Receiver Operating Characteristics (ROC) analysis. Operating points with high positive (>10) and low negative (<0.01) likelihood ratios to stratify the risk of COVID-19 being present were identified and validated. RESULTS: The model achieved an overall accuracy of 0.956 (AUC) on an independent testing dataset of 90 patients. Both rule-in and rule out thresholds were identified and tested. At the rule-in operating point, sensitivity and specificity were 84.4 % and 93.3 % and did not differ from both radiologists (p > 0.05). At the rule-out threshold, sensitivity (100 %) and specificity (60 %) differed significantly from the radiologists (p < 0.05). Likelihood ratios and a Fagan nomogram provide prevalence independent test performance estimates. CONCLUSION: Accurate diagnosis of COVID-19 using a basic deep learning approach is feasible using open-source CT image data. In addition, the machine learning classifier provided validated rule-in and rule-out criteria could be used to stratify the risk of COVID-19 being present. |
format | Online Article Text |
id | pubmed-7641539 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier B.V. |
record_format | MEDLINE/PubMed |
spelling | pubmed-76415392020-11-05 Deep learning analysis provides accurate COVID-19 diagnosis on chest computed tomography Javor, D. Kaplan, H. Kaplan, A. Puchner, S.B. Krestan, C. Baltzer, P. Eur J Radiol Article INTRODUCTION: Computed Tomography is an essential diagnostic tool in the management of COVID-19. Considering the large amount of examinations in high case-load scenarios, an automated tool could facilitate and save critical time in the diagnosis and risk stratification of the disease. METHODS: A novel deep learning derived machine learning (ML) classifier was developed using a simplified programming approach and an open source dataset consisting of 6868 chest CT images from 418 patients which was split into training and validation subsets. The diagnostic performance was then evaluated and compared to experienced radiologists on an independent testing dataset. Diagnostic performance metrics were calculated using Receiver Operating Characteristics (ROC) analysis. Operating points with high positive (>10) and low negative (<0.01) likelihood ratios to stratify the risk of COVID-19 being present were identified and validated. RESULTS: The model achieved an overall accuracy of 0.956 (AUC) on an independent testing dataset of 90 patients. Both rule-in and rule out thresholds were identified and tested. At the rule-in operating point, sensitivity and specificity were 84.4 % and 93.3 % and did not differ from both radiologists (p > 0.05). At the rule-out threshold, sensitivity (100 %) and specificity (60 %) differed significantly from the radiologists (p < 0.05). Likelihood ratios and a Fagan nomogram provide prevalence independent test performance estimates. CONCLUSION: Accurate diagnosis of COVID-19 using a basic deep learning approach is feasible using open-source CT image data. In addition, the machine learning classifier provided validated rule-in and rule-out criteria could be used to stratify the risk of COVID-19 being present. Elsevier B.V. 2020-12 2020-11-04 /pmc/articles/PMC7641539/ /pubmed/33190102 http://dx.doi.org/10.1016/j.ejrad.2020.109402 Text en © 2020 Elsevier B.V. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
spellingShingle | Article Javor, D. Kaplan, H. Kaplan, A. Puchner, S.B. Krestan, C. Baltzer, P. Deep learning analysis provides accurate COVID-19 diagnosis on chest computed tomography |
title | Deep learning analysis provides accurate COVID-19 diagnosis on chest computed tomography |
title_full | Deep learning analysis provides accurate COVID-19 diagnosis on chest computed tomography |
title_fullStr | Deep learning analysis provides accurate COVID-19 diagnosis on chest computed tomography |
title_full_unstemmed | Deep learning analysis provides accurate COVID-19 diagnosis on chest computed tomography |
title_short | Deep learning analysis provides accurate COVID-19 diagnosis on chest computed tomography |
title_sort | deep learning analysis provides accurate covid-19 diagnosis on chest computed tomography |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7641539/ https://www.ncbi.nlm.nih.gov/pubmed/33190102 http://dx.doi.org/10.1016/j.ejrad.2020.109402 |
work_keys_str_mv | AT javord deeplearninganalysisprovidesaccuratecovid19diagnosisonchestcomputedtomography AT kaplanh deeplearninganalysisprovidesaccuratecovid19diagnosisonchestcomputedtomography AT kaplana deeplearninganalysisprovidesaccuratecovid19diagnosisonchestcomputedtomography AT puchnersb deeplearninganalysisprovidesaccuratecovid19diagnosisonchestcomputedtomography AT krestanc deeplearninganalysisprovidesaccuratecovid19diagnosisonchestcomputedtomography AT baltzerp deeplearninganalysisprovidesaccuratecovid19diagnosisonchestcomputedtomography |