Cargando…
Deep learning and its role in COVID-19 medical imaging
COVID-19 is one of the greatest global public health challenges in history. COVID-19 is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is estimated to have an cumulative global case-fatality rate as high as 7.2% (Onder et al., 2020) [1]. As the SARS-CoV-2 spread acros...
Autores principales: | Desai, Sudhen B., Pareek, Anuj, Lungren, Matthew P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Authors. Published by Elsevier B.V.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7641591/ https://www.ncbi.nlm.nih.gov/pubmed/33169117 http://dx.doi.org/10.1016/j.ibmed.2020.100013 |
Ejemplares similares
-
Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines
por: Huang, Shih-Cheng, et al.
Publicado: (2020) -
Self-supervised learning for medical image classification: a systematic review and implementation guidelines
por: Huang, Shih-Cheng, et al.
Publicado: (2023) -
Multimodal fusion with deep neural networks for leveraging CT imaging and electronic health record: a case-study in pulmonary embolism detection
por: Huang, Shih-Cheng, et al.
Publicado: (2020) -
Deep Learning for Detecting COVID-19 Using Medical Images
por: Liu, Jia, et al.
Publicado: (2022) -
Multi-task weak supervision enables anatomically-resolved abnormality detection in whole-body FDG-PET/CT
por: Eyuboglu, Sabri, et al.
Publicado: (2021)