Cargando…

Mechanism of efficient double-strand break repair by a long non-coding RNA

Mechanistic studies in DNA repair have focused on roles of multi-protein DNA complexes, so how long non-coding RNAs (lncRNAs) regulate DNA repair is less well understood. Yet, lncRNA LINP1 is over-expressed in multiple cancers and confers resistance to ionizing radiation and chemotherapeutic drugs....

Descripción completa

Detalles Bibliográficos
Autores principales: Thapar, Roopa, Wang, Jing L, Hammel, Michal, Ye, Ruiqiong, Liang, Ke, Sun, Chengcao, Hnizda, Ales, Liang, Shikang, Maw, Su S, Lee, Linda, Villarreal, Heather, Forrester, Isaac, Fang, Shujuan, Tsai, Miaw-Sheue, Blundell, Tom L, Davis, Anthony J, Lin, Chunru, Lees-Miller, Susan P, Strick, Terence R, Tainer, John A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7641761/
https://www.ncbi.nlm.nih.gov/pubmed/33045735
http://dx.doi.org/10.1093/nar/gkaa784
_version_ 1783605990391808000
author Thapar, Roopa
Wang, Jing L
Hammel, Michal
Ye, Ruiqiong
Liang, Ke
Sun, Chengcao
Hnizda, Ales
Liang, Shikang
Maw, Su S
Lee, Linda
Villarreal, Heather
Forrester, Isaac
Fang, Shujuan
Tsai, Miaw-Sheue
Blundell, Tom L
Davis, Anthony J
Lin, Chunru
Lees-Miller, Susan P
Strick, Terence R
Tainer, John A
author_facet Thapar, Roopa
Wang, Jing L
Hammel, Michal
Ye, Ruiqiong
Liang, Ke
Sun, Chengcao
Hnizda, Ales
Liang, Shikang
Maw, Su S
Lee, Linda
Villarreal, Heather
Forrester, Isaac
Fang, Shujuan
Tsai, Miaw-Sheue
Blundell, Tom L
Davis, Anthony J
Lin, Chunru
Lees-Miller, Susan P
Strick, Terence R
Tainer, John A
author_sort Thapar, Roopa
collection PubMed
description Mechanistic studies in DNA repair have focused on roles of multi-protein DNA complexes, so how long non-coding RNAs (lncRNAs) regulate DNA repair is less well understood. Yet, lncRNA LINP1 is over-expressed in multiple cancers and confers resistance to ionizing radiation and chemotherapeutic drugs. Here, we unveil structural and mechanistic insights into LINP1’s ability to facilitate non-homologous end joining (NHEJ). We characterized LINP1 structure and flexibility and analyzed interactions with the NHEJ factor Ku70/Ku80 (Ku) and Ku complexes that direct NHEJ. LINP1 self-assembles into phase-separated condensates via RNA–RNA interactions that reorganize to form filamentous Ku-containing aggregates. Structured motifs in LINP1 bind Ku, promoting Ku multimerization and stabilization of the initial synaptic event for NHEJ. Significantly, LINP1 acts as an effective proxy for PAXX. Collective results reveal how lncRNA effectively replaces a DNA repair protein for efficient NHEJ with implications for development of resistance to cancer therapy.
format Online
Article
Text
id pubmed-7641761
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-76417612020-11-10 Mechanism of efficient double-strand break repair by a long non-coding RNA Thapar, Roopa Wang, Jing L Hammel, Michal Ye, Ruiqiong Liang, Ke Sun, Chengcao Hnizda, Ales Liang, Shikang Maw, Su S Lee, Linda Villarreal, Heather Forrester, Isaac Fang, Shujuan Tsai, Miaw-Sheue Blundell, Tom L Davis, Anthony J Lin, Chunru Lees-Miller, Susan P Strick, Terence R Tainer, John A Nucleic Acids Res Genome Integrity, Repair and Replication Mechanistic studies in DNA repair have focused on roles of multi-protein DNA complexes, so how long non-coding RNAs (lncRNAs) regulate DNA repair is less well understood. Yet, lncRNA LINP1 is over-expressed in multiple cancers and confers resistance to ionizing radiation and chemotherapeutic drugs. Here, we unveil structural and mechanistic insights into LINP1’s ability to facilitate non-homologous end joining (NHEJ). We characterized LINP1 structure and flexibility and analyzed interactions with the NHEJ factor Ku70/Ku80 (Ku) and Ku complexes that direct NHEJ. LINP1 self-assembles into phase-separated condensates via RNA–RNA interactions that reorganize to form filamentous Ku-containing aggregates. Structured motifs in LINP1 bind Ku, promoting Ku multimerization and stabilization of the initial synaptic event for NHEJ. Significantly, LINP1 acts as an effective proxy for PAXX. Collective results reveal how lncRNA effectively replaces a DNA repair protein for efficient NHEJ with implications for development of resistance to cancer therapy. Oxford University Press 2020-10-12 /pmc/articles/PMC7641761/ /pubmed/33045735 http://dx.doi.org/10.1093/nar/gkaa784 Text en © The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Genome Integrity, Repair and Replication
Thapar, Roopa
Wang, Jing L
Hammel, Michal
Ye, Ruiqiong
Liang, Ke
Sun, Chengcao
Hnizda, Ales
Liang, Shikang
Maw, Su S
Lee, Linda
Villarreal, Heather
Forrester, Isaac
Fang, Shujuan
Tsai, Miaw-Sheue
Blundell, Tom L
Davis, Anthony J
Lin, Chunru
Lees-Miller, Susan P
Strick, Terence R
Tainer, John A
Mechanism of efficient double-strand break repair by a long non-coding RNA
title Mechanism of efficient double-strand break repair by a long non-coding RNA
title_full Mechanism of efficient double-strand break repair by a long non-coding RNA
title_fullStr Mechanism of efficient double-strand break repair by a long non-coding RNA
title_full_unstemmed Mechanism of efficient double-strand break repair by a long non-coding RNA
title_short Mechanism of efficient double-strand break repair by a long non-coding RNA
title_sort mechanism of efficient double-strand break repair by a long non-coding rna
topic Genome Integrity, Repair and Replication
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7641761/
https://www.ncbi.nlm.nih.gov/pubmed/33045735
http://dx.doi.org/10.1093/nar/gkaa784
work_keys_str_mv AT thaparroopa mechanismofefficientdoublestrandbreakrepairbyalongnoncodingrna
AT wangjingl mechanismofefficientdoublestrandbreakrepairbyalongnoncodingrna
AT hammelmichal mechanismofefficientdoublestrandbreakrepairbyalongnoncodingrna
AT yeruiqiong mechanismofefficientdoublestrandbreakrepairbyalongnoncodingrna
AT liangke mechanismofefficientdoublestrandbreakrepairbyalongnoncodingrna
AT sunchengcao mechanismofefficientdoublestrandbreakrepairbyalongnoncodingrna
AT hnizdaales mechanismofefficientdoublestrandbreakrepairbyalongnoncodingrna
AT liangshikang mechanismofefficientdoublestrandbreakrepairbyalongnoncodingrna
AT mawsus mechanismofefficientdoublestrandbreakrepairbyalongnoncodingrna
AT leelinda mechanismofefficientdoublestrandbreakrepairbyalongnoncodingrna
AT villarrealheather mechanismofefficientdoublestrandbreakrepairbyalongnoncodingrna
AT forresterisaac mechanismofefficientdoublestrandbreakrepairbyalongnoncodingrna
AT fangshujuan mechanismofefficientdoublestrandbreakrepairbyalongnoncodingrna
AT tsaimiawsheue mechanismofefficientdoublestrandbreakrepairbyalongnoncodingrna
AT blundelltoml mechanismofefficientdoublestrandbreakrepairbyalongnoncodingrna
AT davisanthonyj mechanismofefficientdoublestrandbreakrepairbyalongnoncodingrna
AT linchunru mechanismofefficientdoublestrandbreakrepairbyalongnoncodingrna
AT leesmillersusanp mechanismofefficientdoublestrandbreakrepairbyalongnoncodingrna
AT strickterencer mechanismofefficientdoublestrandbreakrepairbyalongnoncodingrna
AT tainerjohna mechanismofefficientdoublestrandbreakrepairbyalongnoncodingrna