Cargando…
Mechanism of efficient double-strand break repair by a long non-coding RNA
Mechanistic studies in DNA repair have focused on roles of multi-protein DNA complexes, so how long non-coding RNAs (lncRNAs) regulate DNA repair is less well understood. Yet, lncRNA LINP1 is over-expressed in multiple cancers and confers resistance to ionizing radiation and chemotherapeutic drugs....
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7641761/ https://www.ncbi.nlm.nih.gov/pubmed/33045735 http://dx.doi.org/10.1093/nar/gkaa784 |
_version_ | 1783605990391808000 |
---|---|
author | Thapar, Roopa Wang, Jing L Hammel, Michal Ye, Ruiqiong Liang, Ke Sun, Chengcao Hnizda, Ales Liang, Shikang Maw, Su S Lee, Linda Villarreal, Heather Forrester, Isaac Fang, Shujuan Tsai, Miaw-Sheue Blundell, Tom L Davis, Anthony J Lin, Chunru Lees-Miller, Susan P Strick, Terence R Tainer, John A |
author_facet | Thapar, Roopa Wang, Jing L Hammel, Michal Ye, Ruiqiong Liang, Ke Sun, Chengcao Hnizda, Ales Liang, Shikang Maw, Su S Lee, Linda Villarreal, Heather Forrester, Isaac Fang, Shujuan Tsai, Miaw-Sheue Blundell, Tom L Davis, Anthony J Lin, Chunru Lees-Miller, Susan P Strick, Terence R Tainer, John A |
author_sort | Thapar, Roopa |
collection | PubMed |
description | Mechanistic studies in DNA repair have focused on roles of multi-protein DNA complexes, so how long non-coding RNAs (lncRNAs) regulate DNA repair is less well understood. Yet, lncRNA LINP1 is over-expressed in multiple cancers and confers resistance to ionizing radiation and chemotherapeutic drugs. Here, we unveil structural and mechanistic insights into LINP1’s ability to facilitate non-homologous end joining (NHEJ). We characterized LINP1 structure and flexibility and analyzed interactions with the NHEJ factor Ku70/Ku80 (Ku) and Ku complexes that direct NHEJ. LINP1 self-assembles into phase-separated condensates via RNA–RNA interactions that reorganize to form filamentous Ku-containing aggregates. Structured motifs in LINP1 bind Ku, promoting Ku multimerization and stabilization of the initial synaptic event for NHEJ. Significantly, LINP1 acts as an effective proxy for PAXX. Collective results reveal how lncRNA effectively replaces a DNA repair protein for efficient NHEJ with implications for development of resistance to cancer therapy. |
format | Online Article Text |
id | pubmed-7641761 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-76417612020-11-10 Mechanism of efficient double-strand break repair by a long non-coding RNA Thapar, Roopa Wang, Jing L Hammel, Michal Ye, Ruiqiong Liang, Ke Sun, Chengcao Hnizda, Ales Liang, Shikang Maw, Su S Lee, Linda Villarreal, Heather Forrester, Isaac Fang, Shujuan Tsai, Miaw-Sheue Blundell, Tom L Davis, Anthony J Lin, Chunru Lees-Miller, Susan P Strick, Terence R Tainer, John A Nucleic Acids Res Genome Integrity, Repair and Replication Mechanistic studies in DNA repair have focused on roles of multi-protein DNA complexes, so how long non-coding RNAs (lncRNAs) regulate DNA repair is less well understood. Yet, lncRNA LINP1 is over-expressed in multiple cancers and confers resistance to ionizing radiation and chemotherapeutic drugs. Here, we unveil structural and mechanistic insights into LINP1’s ability to facilitate non-homologous end joining (NHEJ). We characterized LINP1 structure and flexibility and analyzed interactions with the NHEJ factor Ku70/Ku80 (Ku) and Ku complexes that direct NHEJ. LINP1 self-assembles into phase-separated condensates via RNA–RNA interactions that reorganize to form filamentous Ku-containing aggregates. Structured motifs in LINP1 bind Ku, promoting Ku multimerization and stabilization of the initial synaptic event for NHEJ. Significantly, LINP1 acts as an effective proxy for PAXX. Collective results reveal how lncRNA effectively replaces a DNA repair protein for efficient NHEJ with implications for development of resistance to cancer therapy. Oxford University Press 2020-10-12 /pmc/articles/PMC7641761/ /pubmed/33045735 http://dx.doi.org/10.1093/nar/gkaa784 Text en © The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Genome Integrity, Repair and Replication Thapar, Roopa Wang, Jing L Hammel, Michal Ye, Ruiqiong Liang, Ke Sun, Chengcao Hnizda, Ales Liang, Shikang Maw, Su S Lee, Linda Villarreal, Heather Forrester, Isaac Fang, Shujuan Tsai, Miaw-Sheue Blundell, Tom L Davis, Anthony J Lin, Chunru Lees-Miller, Susan P Strick, Terence R Tainer, John A Mechanism of efficient double-strand break repair by a long non-coding RNA |
title | Mechanism of efficient double-strand break repair by a long non-coding RNA |
title_full | Mechanism of efficient double-strand break repair by a long non-coding RNA |
title_fullStr | Mechanism of efficient double-strand break repair by a long non-coding RNA |
title_full_unstemmed | Mechanism of efficient double-strand break repair by a long non-coding RNA |
title_short | Mechanism of efficient double-strand break repair by a long non-coding RNA |
title_sort | mechanism of efficient double-strand break repair by a long non-coding rna |
topic | Genome Integrity, Repair and Replication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7641761/ https://www.ncbi.nlm.nih.gov/pubmed/33045735 http://dx.doi.org/10.1093/nar/gkaa784 |
work_keys_str_mv | AT thaparroopa mechanismofefficientdoublestrandbreakrepairbyalongnoncodingrna AT wangjingl mechanismofefficientdoublestrandbreakrepairbyalongnoncodingrna AT hammelmichal mechanismofefficientdoublestrandbreakrepairbyalongnoncodingrna AT yeruiqiong mechanismofefficientdoublestrandbreakrepairbyalongnoncodingrna AT liangke mechanismofefficientdoublestrandbreakrepairbyalongnoncodingrna AT sunchengcao mechanismofefficientdoublestrandbreakrepairbyalongnoncodingrna AT hnizdaales mechanismofefficientdoublestrandbreakrepairbyalongnoncodingrna AT liangshikang mechanismofefficientdoublestrandbreakrepairbyalongnoncodingrna AT mawsus mechanismofefficientdoublestrandbreakrepairbyalongnoncodingrna AT leelinda mechanismofefficientdoublestrandbreakrepairbyalongnoncodingrna AT villarrealheather mechanismofefficientdoublestrandbreakrepairbyalongnoncodingrna AT forresterisaac mechanismofefficientdoublestrandbreakrepairbyalongnoncodingrna AT fangshujuan mechanismofefficientdoublestrandbreakrepairbyalongnoncodingrna AT tsaimiawsheue mechanismofefficientdoublestrandbreakrepairbyalongnoncodingrna AT blundelltoml mechanismofefficientdoublestrandbreakrepairbyalongnoncodingrna AT davisanthonyj mechanismofefficientdoublestrandbreakrepairbyalongnoncodingrna AT linchunru mechanismofefficientdoublestrandbreakrepairbyalongnoncodingrna AT leesmillersusanp mechanismofefficientdoublestrandbreakrepairbyalongnoncodingrna AT strickterencer mechanismofefficientdoublestrandbreakrepairbyalongnoncodingrna AT tainerjohna mechanismofefficientdoublestrandbreakrepairbyalongnoncodingrna |