Cargando…

Potential Applications of Human Viral Metagenomics and Reference Materials: Considerations for Current and Future Viruses

Viruses are ubiquitous particles comprising genetic material that can infect bacteria, archaea, and fungi, as well as human and other animal cells. Given that determining virus composition and function in association with states of human health and disease is of increasing interest, we anticipate th...

Descripción completa

Detalles Bibliográficos
Autores principales: Santiago-Rodriguez, Tasha M., Hollister, Emily B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7642086/
https://www.ncbi.nlm.nih.gov/pubmed/32917759
http://dx.doi.org/10.1128/AEM.01794-20
Descripción
Sumario:Viruses are ubiquitous particles comprising genetic material that can infect bacteria, archaea, and fungi, as well as human and other animal cells. Given that determining virus composition and function in association with states of human health and disease is of increasing interest, we anticipate that the field of viral metagenomics will continue to expand and be applied in a variety of areas ranging from surveillance to discovery and will rely heavily upon the continued development of reference materials and databases. Information regarding viral composition and function readily translates into biological and clinical applications, including the rapid sequence identification of pathogenic viruses in various sample types. However, viral metagenomic approaches often lack appropriate standards and reference materials to enable cross-study comparisons and assess potential biases which can be introduced at the various stages of collection, storage, processing, and sequence analysis. In addition, implementation of appropriate viral reference materials can aid in the benchmarking of current and development of novel assays for virus identification, discovery, and surveillance. As the field of viral metagenomics expands and standardizes, results will continue to translate into diverse applications.