Cargando…
miR-92a Suppresses Mushroom Body-Dependent Memory Consolidation in Drosophila
MicroRNAs (miRNAs) fine tune gene expression to regulate many aspects of nervous system physiology. Here, we show that miR-92a suppresses memory consolidation that occurs in the αβ and γ mushroom body neurons (MBns) of Drosophila, making miR-92a a memory suppressor miRNA. Bioinformatics analyses sug...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society for Neuroscience
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7642123/ https://www.ncbi.nlm.nih.gov/pubmed/32737186 http://dx.doi.org/10.1523/ENEURO.0224-20.2020 |
Sumario: | MicroRNAs (miRNAs) fine tune gene expression to regulate many aspects of nervous system physiology. Here, we show that miR-92a suppresses memory consolidation that occurs in the αβ and γ mushroom body neurons (MBns) of Drosophila, making miR-92a a memory suppressor miRNA. Bioinformatics analyses suggested that mRNAs encoding kinesin heavy chain 73 (KHC73), a protein that belongs to Kinesin-3 family of anterograde motor proteins, may be a functional target of miR-92a. Behavioral studies that employed expression of khc73 with and without its 3’ untranslated region (UTR) containing miR-92a target sites, luciferase assays in HEK cells with reporters containing wild-type and mutant target sequences in the khc73 3’UTR, and immunohistochemistry experiments involving KHC73 expression with and without the wild-type khc73 3’UTR, all point to the conclusion that khc73 is a major target of miR-92a in its functional role as a miRNA memory suppressor gene. |
---|