Cargando…
Rehabilitation Treatment of Motor Dysfunction Patients Based on Deep Learning Brain–Computer Interface Technology
In recent years, brain–computer interface (BCI) is expected to solve the physiological and psychological needs of patients with motor dysfunction with great individual differences. However, the classification method based on feature extraction requires a lot of prior knowledge when extracting data f...
Autores principales: | Wang, Huihai, Su, Qinglun, Yan, Zhenzhuang, Lu, Fei, Zhao, Qin, Liu, Zhen, Zhou, Fang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7642128/ https://www.ncbi.nlm.nih.gov/pubmed/33192282 http://dx.doi.org/10.3389/fnins.2020.595084 |
Ejemplares similares
-
Characterizing relationships of DTI, fMRI, and motor recovery in stroke rehabilitation utilizing brain-computer interface technology
por: Song, Jie, et al.
Publicado: (2014) -
Dose-response relationships using brain–computer interface technology impact stroke rehabilitation
por: Young, Brittany M., et al.
Publicado: (2015) -
Brain Computer Interface Treatment for Motor Rehabilitation of Upper Extremity of Stroke Patients—A Feasibility Study
por: Sebastián-Romagosa, Marc, et al.
Publicado: (2020) -
Recent Advances in Fluorescence Imaging of Traumatic Brain Injury in Animal Models
por: Lu, Fei, et al.
Publicado: (2021) -
Brain Functional Changes in Stroke Following Rehabilitation Using Brain-Computer Interface-Assisted Motor Imagery With and Without tDCS: A Pilot Study
por: Hu, Mengjiao, et al.
Publicado: (2021)