Cargando…
Harnessing the power of an X-ray laser for serial crystallography of membrane proteins crystallized in lipidic cubic phase
Serial femtosecond crystallography (SFX) with X-ray free-electron lasers (XFELs) has proven highly successful for structure determination of challenging membrane proteins crystallized in lipidic cubic phase; however, like most techniques, it has limitations. Here we attempt to address some of these...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7642783/ https://www.ncbi.nlm.nih.gov/pubmed/33209312 http://dx.doi.org/10.1107/S2052252520012701 |
_version_ | 1783606150898384896 |
---|---|
author | Lee, Ming-Yue Geiger, James Ishchenko, Andrii Han, Gye Won Barty, Anton White, Thomas A. Gati, Cornelius Batyuk, Alexander Hunter, Mark S. Aquila, Andrew Boutet, Sébastien Weierstall, Uwe Cherezov, Vadim Liu, Wei |
author_facet | Lee, Ming-Yue Geiger, James Ishchenko, Andrii Han, Gye Won Barty, Anton White, Thomas A. Gati, Cornelius Batyuk, Alexander Hunter, Mark S. Aquila, Andrew Boutet, Sébastien Weierstall, Uwe Cherezov, Vadim Liu, Wei |
author_sort | Lee, Ming-Yue |
collection | PubMed |
description | Serial femtosecond crystallography (SFX) with X-ray free-electron lasers (XFELs) has proven highly successful for structure determination of challenging membrane proteins crystallized in lipidic cubic phase; however, like most techniques, it has limitations. Here we attempt to address some of these limitations related to the use of a vacuum chamber and the need for attenuation of the XFEL beam, in order to further improve the efficiency of this method. Using an optimized SFX experimental setup in a helium atmosphere, the room-temperature structure of the adenosine A(2A) receptor (A(2A)AR) at 2.0 Å resolution is determined and compared with previous A(2A)AR structures determined in vacuum and/or at cryogenic temperatures. Specifically, the capability of utilizing high XFEL beam transmissions is demonstrated, in conjunction with a high dynamic range detector, to collect high-resolution SFX data while reducing crystalline material consumption and shortening the collection time required for a complete dataset. The experimental setup presented herein can be applied to future SFX applications for protein nanocrystal samples to aid in structure-based discovery efforts of therapeutic targets that are difficult to crystallize. |
format | Online Article Text |
id | pubmed-7642783 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | International Union of Crystallography |
record_format | MEDLINE/PubMed |
spelling | pubmed-76427832020-11-17 Harnessing the power of an X-ray laser for serial crystallography of membrane proteins crystallized in lipidic cubic phase Lee, Ming-Yue Geiger, James Ishchenko, Andrii Han, Gye Won Barty, Anton White, Thomas A. Gati, Cornelius Batyuk, Alexander Hunter, Mark S. Aquila, Andrew Boutet, Sébastien Weierstall, Uwe Cherezov, Vadim Liu, Wei IUCrJ Research Letters Serial femtosecond crystallography (SFX) with X-ray free-electron lasers (XFELs) has proven highly successful for structure determination of challenging membrane proteins crystallized in lipidic cubic phase; however, like most techniques, it has limitations. Here we attempt to address some of these limitations related to the use of a vacuum chamber and the need for attenuation of the XFEL beam, in order to further improve the efficiency of this method. Using an optimized SFX experimental setup in a helium atmosphere, the room-temperature structure of the adenosine A(2A) receptor (A(2A)AR) at 2.0 Å resolution is determined and compared with previous A(2A)AR structures determined in vacuum and/or at cryogenic temperatures. Specifically, the capability of utilizing high XFEL beam transmissions is demonstrated, in conjunction with a high dynamic range detector, to collect high-resolution SFX data while reducing crystalline material consumption and shortening the collection time required for a complete dataset. The experimental setup presented herein can be applied to future SFX applications for protein nanocrystal samples to aid in structure-based discovery efforts of therapeutic targets that are difficult to crystallize. International Union of Crystallography 2020-10-15 /pmc/articles/PMC7642783/ /pubmed/33209312 http://dx.doi.org/10.1107/S2052252520012701 Text en © Lee et al. 2020 http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Research Letters Lee, Ming-Yue Geiger, James Ishchenko, Andrii Han, Gye Won Barty, Anton White, Thomas A. Gati, Cornelius Batyuk, Alexander Hunter, Mark S. Aquila, Andrew Boutet, Sébastien Weierstall, Uwe Cherezov, Vadim Liu, Wei Harnessing the power of an X-ray laser for serial crystallography of membrane proteins crystallized in lipidic cubic phase |
title | Harnessing the power of an X-ray laser for serial crystallography of membrane proteins crystallized in lipidic cubic phase |
title_full | Harnessing the power of an X-ray laser for serial crystallography of membrane proteins crystallized in lipidic cubic phase |
title_fullStr | Harnessing the power of an X-ray laser for serial crystallography of membrane proteins crystallized in lipidic cubic phase |
title_full_unstemmed | Harnessing the power of an X-ray laser for serial crystallography of membrane proteins crystallized in lipidic cubic phase |
title_short | Harnessing the power of an X-ray laser for serial crystallography of membrane proteins crystallized in lipidic cubic phase |
title_sort | harnessing the power of an x-ray laser for serial crystallography of membrane proteins crystallized in lipidic cubic phase |
topic | Research Letters |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7642783/ https://www.ncbi.nlm.nih.gov/pubmed/33209312 http://dx.doi.org/10.1107/S2052252520012701 |
work_keys_str_mv | AT leemingyue harnessingthepowerofanxraylaserforserialcrystallographyofmembraneproteinscrystallizedinlipidiccubicphase AT geigerjames harnessingthepowerofanxraylaserforserialcrystallographyofmembraneproteinscrystallizedinlipidiccubicphase AT ishchenkoandrii harnessingthepowerofanxraylaserforserialcrystallographyofmembraneproteinscrystallizedinlipidiccubicphase AT hangyewon harnessingthepowerofanxraylaserforserialcrystallographyofmembraneproteinscrystallizedinlipidiccubicphase AT bartyanton harnessingthepowerofanxraylaserforserialcrystallographyofmembraneproteinscrystallizedinlipidiccubicphase AT whitethomasa harnessingthepowerofanxraylaserforserialcrystallographyofmembraneproteinscrystallizedinlipidiccubicphase AT gaticornelius harnessingthepowerofanxraylaserforserialcrystallographyofmembraneproteinscrystallizedinlipidiccubicphase AT batyukalexander harnessingthepowerofanxraylaserforserialcrystallographyofmembraneproteinscrystallizedinlipidiccubicphase AT huntermarks harnessingthepowerofanxraylaserforserialcrystallographyofmembraneproteinscrystallizedinlipidiccubicphase AT aquilaandrew harnessingthepowerofanxraylaserforserialcrystallographyofmembraneproteinscrystallizedinlipidiccubicphase AT boutetsebastien harnessingthepowerofanxraylaserforserialcrystallographyofmembraneproteinscrystallizedinlipidiccubicphase AT weierstalluwe harnessingthepowerofanxraylaserforserialcrystallographyofmembraneproteinscrystallizedinlipidiccubicphase AT cherezovvadim harnessingthepowerofanxraylaserforserialcrystallographyofmembraneproteinscrystallizedinlipidiccubicphase AT liuwei harnessingthepowerofanxraylaserforserialcrystallographyofmembraneproteinscrystallizedinlipidiccubicphase |