Cargando…

The Conserved ASCL1/MASH-1 Ortholog HLH-3 Specifies Sex-Specific Ventral Cord Motor Neuron Fate in Caenorhabditis elegans

Neural specification is regulated by one or many transcription factors that control expression of effector genes that mediate function and determine neuronal type. Here we identify a novel role for one conserved proneural factor, the bHLH protein HLH-3, implicated in the specification of sex-specifi...

Descripción completa

Detalles Bibliográficos
Autores principales: Perez, Lillian M., Alfonso, Aixa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Genetics Society of America 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7642948/
https://www.ncbi.nlm.nih.gov/pubmed/32973001
http://dx.doi.org/10.1534/g3.120.401458
Descripción
Sumario:Neural specification is regulated by one or many transcription factors that control expression of effector genes that mediate function and determine neuronal type. Here we identify a novel role for one conserved proneural factor, the bHLH protein HLH-3, implicated in the specification of sex-specific ventral cord motor neurons in C. elegans. Proneural genes act in early stages of neurogenesis in early progenitors, but here, we demonstrate a later role for hlh-3. First, we document that differentiation of the ventral cord type C motor neuron class (VC) within their neuron class, is dynamic in time and space. Expression of VC class-specific and subclass-specific identity genes is distinct through development and is dependent on the VC position along the A-P axis and their proximity to the vulva. Our characterization of the expression of VC class and VC subclass-specific differentiation markers in the absence of hlh-3 function reveals that VC fate specification, differentiation, and morphology requires hlh-3 function. Finally, we conclude that hlh-3 cell-autonomously specifies VC cell fate.