Cargando…

Extraction of Fulvic Acid from Lignite and Characterization of Its Functional Groups

[Image: see text] Fulvic acid (FA) is a complex organic mixture composed of small molecules. The structure and composition of FA vary greatly because of the different raw materials used for preparing FA. In this work, FA was extracted from shallow low-rank lignite by hydrogen peroxide (H(2)O(2)) in...

Descripción completa

Detalles Bibliográficos
Autores principales: Gong, Guanqun, Xu, Liangwei, Zhang, Yingjie, Liu, Weixin, Wang, Ming, Zhao, Yufeng, Yuan, Xin, Li, Yajun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7643152/
https://www.ncbi.nlm.nih.gov/pubmed/33163778
http://dx.doi.org/10.1021/acsomega.0c03388
Descripción
Sumario:[Image: see text] Fulvic acid (FA) is a complex organic mixture composed of small molecules. The structure and composition of FA vary greatly because of the different raw materials used for preparing FA. In this work, FA was extracted from shallow low-rank lignite by hydrogen peroxide (H(2)O(2)) in a microwave field, and the functional groups of FA were characterized. The optimal extraction process was determined, with the H(2)O(2) concentration being the key factor affecting the yield of FA. Thermogravimetric analysis showed that FA was mainly composed of low molecular weight and readily pyrolyzed compounds. As shown by Fourier transform infrared spectroscopy, in the process of FA extraction by H(2)O(2) oxidation of lignite, the content of −COOH increased, long-chain aliphatic compounds decreased, stretching vibrations of aromatic ring skeletons disappeared, and aromatic ring substitution became mainly tri- or disubstitution. Fluorescence spectroscopy indicated that FA had a low degree of aromaticity. X-ray photoelectron spectroscopy qualitatively and quantitatively revealed that the main modes of carbon–oxygen bonding in FA were C–O–, COO–, and C=O. Thus, this study not only lays a foundation for studying the composition and structure of coal-based FA but also opens a new avenue for a clean and efficient utilization of lignite.