Cargando…
DEEPScreen: high performance drug–target interaction prediction with convolutional neural networks using 2-D structural compound representations
The identification of physical interactions between drug candidate compounds and target biomolecules is an important process in drug discovery. Since conventional screening procedures are expensive and time consuming, computational approaches are employed to provide aid by automatically predicting n...
Autores principales: | Rifaioglu, Ahmet Sureyya, Nalbat, Esra, Atalay, Volkan, Martin, Maria Jesus, Cetin-Atalay, Rengul, Doğan, Tunca |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7643205/ https://www.ncbi.nlm.nih.gov/pubmed/33209251 http://dx.doi.org/10.1039/c9sc03414e |
Ejemplares similares
-
DEEPred: Automated Protein Function Prediction with Multi-task Feed-forward Deep Neural Networks
por: Sureyya Rifaioglu, Ahmet, et al.
Publicado: (2019) -
CROssBAR: comprehensive resource of biomedical relations with knowledge graph representations
por: Doğan, Tunca, et al.
Publicado: (2021) -
ECPred: a tool for the prediction of the enzymatic functions of protein sequences based on the EC nomenclature
por: Dalkiran, Alperen, et al.
Publicado: (2018) -
Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases
por: Rifaioglu, Ahmet Sureyya, et al.
Publicado: (2018) -
Transfer learning for drug–target interaction prediction
por: Dalkıran, Alperen, et al.
Publicado: (2023)