Cargando…
Biological interpretation of deep neural network for phenotype prediction based on gene expression
BACKGROUND: The use of predictive gene signatures to assist clinical decision is becoming more and more important. Deep learning has a huge potential in the prediction of phenotype from gene expression profiles. However, neural networks are viewed as black boxes, where accurate predictions are provi...
Autores principales: | Hanczar, Blaise, Zehraoui, Farida, Issa, Tina, Arles, Mathieu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7643315/ https://www.ncbi.nlm.nih.gov/pubmed/33148191 http://dx.doi.org/10.1186/s12859-020-03836-4 |
Ejemplares similares
-
Deep GONet: self-explainable deep neural network based on Gene Ontology for phenotype prediction from gene expression data
por: Bourgeais, Victoria, et al.
Publicado: (2021) -
Assessment of deep learning and transfer learning for cancer prediction based on gene expression data
por: Hanczar, Blaise, et al.
Publicado: (2022) -
A3SOM, abstained explainable semi-supervised neural network based on self-organizing map
por: Creux, Constance, et al.
Publicado: (2023) -
AttOmics: attention-based architecture for diagnosis and prognosis from omics data
por: Beaude, Aurélien, et al.
Publicado: (2023) -
Interpretable and accurate prediction models for metagenomics data
por: Prifti, Edi, et al.
Publicado: (2020)