Cargando…
Direct cortical thickness estimation using deep learning‐based anatomy segmentation and cortex parcellation
Accurate and reliable measures of cortical thickness from magnetic resonance imaging are an important biomarker to study neurodegenerative and neurological disorders. Diffeomorphic registration‐based cortical thickness (DiReCT) is a known technique to derive such measures from non‐surface‐based volu...
Autores principales: | Rebsamen, Michael, Rummel, Christian, Reyes, Mauricio, Wiest, Roland, McKinley, Richard |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7643371/ https://www.ncbi.nlm.nih.gov/pubmed/32786059 http://dx.doi.org/10.1002/hbm.25159 |
Ejemplares similares
-
A Quantitative Imaging Biomarker Supporting Radiological Assessment of Hippocampal Sclerosis Derived From Deep Learning-Based Segmentation of T1w-MRI
por: Rebsamen, Michael, et al.
Publicado: (2022) -
Divide and Conquer: Stratifying Training Data by Tumor Grade Improves Deep Learning-Based Brain Tumor Segmentation
por: Rebsamen, Michael, et al.
Publicado: (2019) -
Brain Morphometry Estimation: From Hours to Seconds Using Deep Learning
por: Rebsamen, Michael, et al.
Publicado: (2020) -
Simultaneous lesion and brain segmentation in multiple sclerosis using deep neural networks
por: McKinley, Richard, et al.
Publicado: (2021) -
Cortical thickness and its relationship to cognitive performance and metabolic control in adults with phenylketonuria
por: Muri, Raphaela, et al.
Publicado: (2022)