Cargando…
Identifying resting‐state effective connectivity abnormalities in drug‐naïve major depressive disorder diagnosis via graph convolutional networks
Major depressive disorder (MDD) is a leading cause of disability; its symptoms interfere with social, occupational, interpersonal, and academic functioning. However, the diagnosis of MDD is still made by phenomenological approach. The advent of neuroimaging techniques allowed numerous studies to use...
Autores principales: | Jun, Eunji, Na, Kyoung‐Sae, Kang, Wooyoung, Lee, Jiyeon, Suk, Heung‐Il, Ham, Byung‐Joo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7643383/ https://www.ncbi.nlm.nih.gov/pubmed/32813309 http://dx.doi.org/10.1002/hbm.25175 |
Ejemplares similares
-
Alterations in the Occipital Cortex of Drug-Naïve Adults With Major Depressive Disorder: A Surface-Based Analysis of Surface Area and Cortical Thickness
por: Lee, Jee Soo, et al.
Publicado: (2021) -
Increased Cerebellar-Default-Mode-Network Connectivity in Drug-Naive Major Depressive Disorder at Rest
por: Guo, Wenbin, et al.
Publicado: (2015) -
Cortical Thickness and Surface Area Abnormalities in Bipolar I and II Disorders
por: Woo, Yoonmi, et al.
Publicado: (2021) -
DeepEZ: A Graph Convolutional Network for Automated Epileptogenic Zone Localization From Resting-State fMRI Connectivity
por: Nandakumar, Naresh, et al.
Publicado: (2023) -
Abnormal resting-state functional connectivity of hippocampal subfields in patients with major depressive disorder
por: Hao, Zi Yu, et al.
Publicado: (2020)