Cargando…
QIMCMDA: MiRNA-Disease Association Prediction by q-Kernel Information and Matrix Completion
Studies have shown that microRNAs (miRNAs) are closely associated with many human diseases, but we have not yet fully understand the role and potential molecular mechanisms of miRNAs in the process of disease development. However, ordinary biological experiments often require higher costs, and compu...
Autores principales: | Wang, Lin, Chen, Yaguang, Zhang, Naiqian, Chen, Wei, Zhang, Yusen, Gao, Rui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7643770/ https://www.ncbi.nlm.nih.gov/pubmed/33193744 http://dx.doi.org/10.3389/fgene.2020.594796 |
Ejemplares similares
-
MDA-SKF: Similarity Kernel Fusion for Accurately Discovering miRNA-Disease Association
por: Jiang, Limin, et al.
Publicado: (2018) -
Inferring human miRNA–disease associations via multiple kernel fusion on GCNII
por: Lu, Shanghui, et al.
Publicado: (2022) -
SPCMLMI: A structural perturbation-based matrix completion method to predict lncRNA–miRNA interactions
por: Wang, Mei-Neng, et al.
Publicado: (2022) -
Improved Pre-miRNAs Identification Through Mutual Information of Pre-miRNA Sequences and Structures
por: Fu, Xiangzheng, et al.
Publicado: (2019) -
Predicting miRNA-disease associations based on multi-view information fusion
por: Xie, Xuping, et al.
Publicado: (2022)