Cargando…
A Deep Learning Method for Near-Real-Time Cloud and Cloud Shadow Segmentation from Gaofen-1 Images
In this study, an essential application of remote sensing using deep learning functionality is presented. Gaofen-1 satellite mission, developed by the China National Space Administration (CNSA) for the civilian high-definition Earth observation satellite program, provides near-real-time observations...
Autores principales: | Khoshboresh-Masouleh, Mehdi, Shah-Hosseini, Reza |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7644308/ https://www.ncbi.nlm.nih.gov/pubmed/33178258 http://dx.doi.org/10.1155/2020/8811630 |
Ejemplares similares
-
CloudSEN12, a global dataset for semantic understanding of cloud and cloud shadow in Sentinel-2
por: Aybar, Cesar, et al.
Publicado: (2022) -
Cloud shadows drive vertical migrations of deep-dwelling marine life
por: Omand, Melissa M., et al.
Publicado: (2021) -
Deep Segmentation of Point Clouds of Wheat
por: Ghahremani, Morteza, et al.
Publicado: (2021) -
InSAR Baseline Estimation for Gaofen-3 Real-Time DEM Generation
por: Lu, Huan, et al.
Publicado: (2018) -
Online Learning Approach for Predictive Real-Time Energy Trading in Cloud-RANs
por: Wan Ariffin, Wan Nur Suryani Firuz, et al.
Publicado: (2021)