Cargando…
Understanding the true effects of the COVID-19 lockdown on air pollution by means of machine learning()
During March 2020, most European countries implemented lockdowns to restrict the transmission of SARS-CoV-2, the virus which causes COVID-19 through their populations. These restrictions had positive impacts for air quality due to a dramatic reduction of economic activity and atmospheric emissions....
Autores principales: | Lovrić, Mario, Pavlović, Kristina, Vuković, Matej, Grange, Stuart K., Haberl, Michael, Kern, Roman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7644435/ https://www.ncbi.nlm.nih.gov/pubmed/33246767 http://dx.doi.org/10.1016/j.envpol.2020.115900 |
Ejemplares similares
-
Machine Learning and Meteorological Normalization for Assessment of Particulate Matter Changes during the COVID-19 Lockdown in Zagreb, Croatia †
por: Lovrić, Mario, et al.
Publicado: (2022) -
Predicting Treatment Outcomes Using Explainable Machine Learning in Children with Asthma
por: Lovrić, Mario, et al.
Publicado: (2021) -
Understanding the heterogeneity of COVID-19 deaths and contagions: The role of air pollution and lockdown decisions()
por: Becchetti, Leonardo, et al.
Publicado: (2022) -
The Signature of the Coronavirus Lockdown in Air Pollution in Greece
por: Varotsos, Costas, et al.
Publicado: (2021) -
Lockdown cleans up UK air pollution
Publicado: (2020)