Cargando…
Early posterior negativity in humans to pictures of snakes and spiders: effects of proximity
Snakes have proven to drive early attentional capture due to their evolutionary importance, as reflected by the early posterior negativity (EPN). The EPN snake effect might be partly driven by the proximity of the animal. In this study, by employing full-body (medium shot) and head-focused (close-up...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7644447/ https://www.ncbi.nlm.nih.gov/pubmed/33009915 http://dx.doi.org/10.1007/s00221-020-05925-5 |
Sumario: | Snakes have proven to drive early attentional capture due to their evolutionary importance, as reflected by the early posterior negativity (EPN). The EPN snake effect might be partly driven by the proximity of the animal. In this study, by employing full-body (medium shot) and head-focused (close-up) pictures, we investigated whether the relative nearness (proximity) of the animal on the picture affects the snake EPN effect. We presented thirty participants with medium shot and close-up snake, spider and bird pictures in a rapid serial presentation paradigm at a presentation rate of three frames per second. We extracted the mean EPN activity from the 225–330 ms time frame after stimulus onset at the parietal–occipital cluster (PO3, O1, Oz, O2, PO4). The results indicate enhanced EPN for snake pictures as compared to spider and bird pictures. In addition, medium-shot snake pictures elicited higher EPN amplitudes than close-up snake pictures, suggesting that the EPN is higher when local, high spatial frequency attributes are visible. Spatial frequency analysis of the stimuli indicated that medium-shot snake pictures possess more power in the high spatial frequency bands, compared to medium-shot spider and bird pictures. |
---|