Cargando…
Assessment of the metal pollution in surface sediments of coastal Tasaul Lake (Romania)
Forty-three surface sediment samples were collected in September 2019 from Tasaul Lake (Black Sea coast, Romania) to examine the metal distribution patterns, assess the level of metal contamination, and identify the pollutant sources. The determined mean metal concentrations were as follows: Al 49,7...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7644546/ https://www.ncbi.nlm.nih.gov/pubmed/33155147 http://dx.doi.org/10.1007/s10661-020-08698-0 |
Sumario: | Forty-three surface sediment samples were collected in September 2019 from Tasaul Lake (Black Sea coast, Romania) to examine the metal distribution patterns, assess the level of metal contamination, and identify the pollutant sources. The determined mean metal concentrations were as follows: Al 49,772 mg/kg, Zn 84.40 mg/kg, Cr 83.70 mg/kg, V 76.45 mg/kg, Ni 42.53 mg/kg, Cu 34.27 mg/kg, Pb 26.30 mg/kg, As 12.49 mg/kg, and Hg 0.06 mg/kg. The metals in the surface sediments of Tasaul Lake displayed moderate spatial variation, with higher metal concentrations mainly occurring in the south and southeast (As, Pb, and Hg), southwest (Cu and Zn), and west of the lake (Cr, Ni, and V). Heavy metal contamination in sediments is assessed using pollution indices such as enrichment factor, contamination factor, and pollution load index. The highest CFs and EFs were determined for As (moderate to high pollution), followed by Pb (low to moderate pollution). The Cu, Zn, and Hg pollution indices showed values corresponding to low pollution levels, while Ni, Cr, and V presented the lowest indices, suggesting unpolluted sediments. Multivariate statistical analyses were performed to identify the origin of the analyzed heavy metals. Cr was predominantly sourced from lithogenic components, Ni and V originated from both natural and anthropogenic sources, and As, Cu, Zn, Pb, and Hg showed mainly anthropogenic sources such as agricultural runoff, domestic and industrial wastewater discharges, and quarrying activities. |
---|