Cargando…

Cell cycle dependence of apoptosis photo-triggered using peptide-photosensitizer conjugate

Investigation of the relevance between cell cycle status and the bioactivity of exogenously delivered biomacromolecules is hindered by their time-consuming cell internalization and the cytotoxicity of transfection methods. In this study, we addressed these problems by utilizing the photochemical int...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Hyungjin, Watanabe, Sho, Kitamatsu, Mizuki, Watanabe, Kazunori, Ohtsuki, Takashi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7644668/
https://www.ncbi.nlm.nih.gov/pubmed/33154435
http://dx.doi.org/10.1038/s41598-020-76100-7
Descripción
Sumario:Investigation of the relevance between cell cycle status and the bioactivity of exogenously delivered biomacromolecules is hindered by their time-consuming cell internalization and the cytotoxicity of transfection methods. In this study, we addressed these problems by utilizing the photochemical internalization (PCI) method using a peptide/protein-photosensitizer conjugate, which enables immediate cytoplasmic internalization of the bioactive peptides/proteins in a light-dependent manner with low cytotoxicity. To identify the cell-cycle dependent apoptosis, a TatBim peptide-photosensitizer conjugate (TatBim-PS) with apoptotic activity was photo-dependently internalized into HeLa cells expressing a fluorescent ubiquitination-based cell cycle indicator (Fucci2). Upon irradiation, cytoplasmic TatBim-PS internalization exceeded 95% for all cells classified in the G(1), S, and G(2)/M cell cycle phases with no significant differences between groups. TatBim-PS-mediated apoptosis was more efficiently triggered by photoirradiation in the G(1)/S transition than in the G(1) and S/G(2)/M phases, suggesting high sensitivity of the former phase to Bim-induced apoptosis. Thus, the cell cycle dependence of Bim peptide-induced apoptosis was successfully investigated using Fucci2 indicator and the PCI method. Since PCI-mediated cytoplasmic internalization of peptides is rapid and does not span multiple cell cycle phases, the Fucci-PCI method constitutes a promising tool for analyzing the cell cycle dependence of peptides/protein functions.