Cargando…
Unsupervised and supervised learning with neural network for human transcriptome analysis and cancer diagnosis
Deep learning analysis of images and text unfolds new horizons in medicine. However, analysis of transcriptomic data, the cause of biological and pathological changes, is hampered by structural complexity distinctive from images and text. Here we conduct unsupervised training on more than 20,000 hum...
Autores principales: | Yuan, Bo, Yang, Dong, Rothberg, Bonnie E. G., Chang, Hao, Xu, Tian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7644700/ https://www.ncbi.nlm.nih.gov/pubmed/33154423 http://dx.doi.org/10.1038/s41598-020-75715-0 |
Ejemplares similares
-
Supervised and unsupervised learning for data science
por: Berry, Michael W, et al.
Publicado: (2020) -
CoSTA: unsupervised convolutional neural network learning for spatial transcriptomics analysis
por: Xu, Yang, et al.
Publicado: (2021) -
Supervised, semi-supervised and unsupervised inference of gene regulatory networks
por: Maetschke, Stefan R., et al.
Publicado: (2014) -
Combining Supervised and Unsupervised Learning Algorithms for Human Activity Recognition
por: Budisteanu, Elena-Alexandra, et al.
Publicado: (2021) -
Quantitative neuronal morphometry by supervised and unsupervised learning
por: Bijari, Kayvan, et al.
Publicado: (2021)