Cargando…
A sparse deep learning approach for automatic segmentation of human vasculature in multispectral optoacoustic tomography
Multispectral Optoacoustic Tomography (MSOT) resolves oxy- (HbO(2)) and deoxy-hemoglobin (Hb) to perform vascular imaging. MSOT suffers from gradual signal attenuation with depth due to light-tissue interactions: an effect that hinders the precise manual segmentation of vessels. Furthermore, vascula...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7644749/ https://www.ncbi.nlm.nih.gov/pubmed/33194545 http://dx.doi.org/10.1016/j.pacs.2020.100203 |
_version_ | 1783606518263840768 |
---|---|
author | Chlis, Nikolaos-Kosmas Karlas, Angelos Fasoula, Nikolina-Alexia Kallmayer, Michael Eckstein, Hans-Henning Theis, Fabian J. Ntziachristos, Vasilis Marr, Carsten |
author_facet | Chlis, Nikolaos-Kosmas Karlas, Angelos Fasoula, Nikolina-Alexia Kallmayer, Michael Eckstein, Hans-Henning Theis, Fabian J. Ntziachristos, Vasilis Marr, Carsten |
author_sort | Chlis, Nikolaos-Kosmas |
collection | PubMed |
description | Multispectral Optoacoustic Tomography (MSOT) resolves oxy- (HbO(2)) and deoxy-hemoglobin (Hb) to perform vascular imaging. MSOT suffers from gradual signal attenuation with depth due to light-tissue interactions: an effect that hinders the precise manual segmentation of vessels. Furthermore, vascular assessment requires functional tests, which last several minutes and result in recording thousands of images. Here, we introduce a deep learning approach with a sparse-UNET (S-UNET) for automatic vascular segmentation in MSOT images to avoid the rigorous and time-consuming manual segmentation. We evaluated the S-UNET on a test-set of 33 images, achieving a median DICE score of 0.88. Apart from high segmentation performance, our method based its decision on two wavelengths with physical meaning for the task-at-hand: 850 nm (peak absorption of oxy-hemoglobin) and 810 nm (isosbestic point of oxy-and deoxy-hemoglobin). Thus, our approach achieves precise data-driven vascular segmentation for automated vascular assessment and may boost MSOT further towards its clinical translation. |
format | Online Article Text |
id | pubmed-7644749 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-76447492020-11-13 A sparse deep learning approach for automatic segmentation of human vasculature in multispectral optoacoustic tomography Chlis, Nikolaos-Kosmas Karlas, Angelos Fasoula, Nikolina-Alexia Kallmayer, Michael Eckstein, Hans-Henning Theis, Fabian J. Ntziachristos, Vasilis Marr, Carsten Photoacoustics Research Article Multispectral Optoacoustic Tomography (MSOT) resolves oxy- (HbO(2)) and deoxy-hemoglobin (Hb) to perform vascular imaging. MSOT suffers from gradual signal attenuation with depth due to light-tissue interactions: an effect that hinders the precise manual segmentation of vessels. Furthermore, vascular assessment requires functional tests, which last several minutes and result in recording thousands of images. Here, we introduce a deep learning approach with a sparse-UNET (S-UNET) for automatic vascular segmentation in MSOT images to avoid the rigorous and time-consuming manual segmentation. We evaluated the S-UNET on a test-set of 33 images, achieving a median DICE score of 0.88. Apart from high segmentation performance, our method based its decision on two wavelengths with physical meaning for the task-at-hand: 850 nm (peak absorption of oxy-hemoglobin) and 810 nm (isosbestic point of oxy-and deoxy-hemoglobin). Thus, our approach achieves precise data-driven vascular segmentation for automated vascular assessment and may boost MSOT further towards its clinical translation. Elsevier 2020-09-10 /pmc/articles/PMC7644749/ /pubmed/33194545 http://dx.doi.org/10.1016/j.pacs.2020.100203 Text en © 2020 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Research Article Chlis, Nikolaos-Kosmas Karlas, Angelos Fasoula, Nikolina-Alexia Kallmayer, Michael Eckstein, Hans-Henning Theis, Fabian J. Ntziachristos, Vasilis Marr, Carsten A sparse deep learning approach for automatic segmentation of human vasculature in multispectral optoacoustic tomography |
title | A sparse deep learning approach for automatic segmentation of human vasculature in multispectral optoacoustic tomography |
title_full | A sparse deep learning approach for automatic segmentation of human vasculature in multispectral optoacoustic tomography |
title_fullStr | A sparse deep learning approach for automatic segmentation of human vasculature in multispectral optoacoustic tomography |
title_full_unstemmed | A sparse deep learning approach for automatic segmentation of human vasculature in multispectral optoacoustic tomography |
title_short | A sparse deep learning approach for automatic segmentation of human vasculature in multispectral optoacoustic tomography |
title_sort | sparse deep learning approach for automatic segmentation of human vasculature in multispectral optoacoustic tomography |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7644749/ https://www.ncbi.nlm.nih.gov/pubmed/33194545 http://dx.doi.org/10.1016/j.pacs.2020.100203 |
work_keys_str_mv | AT chlisnikolaoskosmas asparsedeeplearningapproachforautomaticsegmentationofhumanvasculatureinmultispectraloptoacoustictomography AT karlasangelos asparsedeeplearningapproachforautomaticsegmentationofhumanvasculatureinmultispectraloptoacoustictomography AT fasoulanikolinaalexia asparsedeeplearningapproachforautomaticsegmentationofhumanvasculatureinmultispectraloptoacoustictomography AT kallmayermichael asparsedeeplearningapproachforautomaticsegmentationofhumanvasculatureinmultispectraloptoacoustictomography AT ecksteinhanshenning asparsedeeplearningapproachforautomaticsegmentationofhumanvasculatureinmultispectraloptoacoustictomography AT theisfabianj asparsedeeplearningapproachforautomaticsegmentationofhumanvasculatureinmultispectraloptoacoustictomography AT ntziachristosvasilis asparsedeeplearningapproachforautomaticsegmentationofhumanvasculatureinmultispectraloptoacoustictomography AT marrcarsten asparsedeeplearningapproachforautomaticsegmentationofhumanvasculatureinmultispectraloptoacoustictomography AT chlisnikolaoskosmas sparsedeeplearningapproachforautomaticsegmentationofhumanvasculatureinmultispectraloptoacoustictomography AT karlasangelos sparsedeeplearningapproachforautomaticsegmentationofhumanvasculatureinmultispectraloptoacoustictomography AT fasoulanikolinaalexia sparsedeeplearningapproachforautomaticsegmentationofhumanvasculatureinmultispectraloptoacoustictomography AT kallmayermichael sparsedeeplearningapproachforautomaticsegmentationofhumanvasculatureinmultispectraloptoacoustictomography AT ecksteinhanshenning sparsedeeplearningapproachforautomaticsegmentationofhumanvasculatureinmultispectraloptoacoustictomography AT theisfabianj sparsedeeplearningapproachforautomaticsegmentationofhumanvasculatureinmultispectraloptoacoustictomography AT ntziachristosvasilis sparsedeeplearningapproachforautomaticsegmentationofhumanvasculatureinmultispectraloptoacoustictomography AT marrcarsten sparsedeeplearningapproachforautomaticsegmentationofhumanvasculatureinmultispectraloptoacoustictomography |