Cargando…

A sparse deep learning approach for automatic segmentation of human vasculature in multispectral optoacoustic tomography

Multispectral Optoacoustic Tomography (MSOT) resolves oxy- (HbO(2)) and deoxy-hemoglobin (Hb) to perform vascular imaging. MSOT suffers from gradual signal attenuation with depth due to light-tissue interactions: an effect that hinders the precise manual segmentation of vessels. Furthermore, vascula...

Descripción completa

Detalles Bibliográficos
Autores principales: Chlis, Nikolaos-Kosmas, Karlas, Angelos, Fasoula, Nikolina-Alexia, Kallmayer, Michael, Eckstein, Hans-Henning, Theis, Fabian J., Ntziachristos, Vasilis, Marr, Carsten
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7644749/
https://www.ncbi.nlm.nih.gov/pubmed/33194545
http://dx.doi.org/10.1016/j.pacs.2020.100203
_version_ 1783606518263840768
author Chlis, Nikolaos-Kosmas
Karlas, Angelos
Fasoula, Nikolina-Alexia
Kallmayer, Michael
Eckstein, Hans-Henning
Theis, Fabian J.
Ntziachristos, Vasilis
Marr, Carsten
author_facet Chlis, Nikolaos-Kosmas
Karlas, Angelos
Fasoula, Nikolina-Alexia
Kallmayer, Michael
Eckstein, Hans-Henning
Theis, Fabian J.
Ntziachristos, Vasilis
Marr, Carsten
author_sort Chlis, Nikolaos-Kosmas
collection PubMed
description Multispectral Optoacoustic Tomography (MSOT) resolves oxy- (HbO(2)) and deoxy-hemoglobin (Hb) to perform vascular imaging. MSOT suffers from gradual signal attenuation with depth due to light-tissue interactions: an effect that hinders the precise manual segmentation of vessels. Furthermore, vascular assessment requires functional tests, which last several minutes and result in recording thousands of images. Here, we introduce a deep learning approach with a sparse-UNET (S-UNET) for automatic vascular segmentation in MSOT images to avoid the rigorous and time-consuming manual segmentation. We evaluated the S-UNET on a test-set of 33 images, achieving a median DICE score of 0.88. Apart from high segmentation performance, our method based its decision on two wavelengths with physical meaning for the task-at-hand: 850 nm (peak absorption of oxy-hemoglobin) and 810 nm (isosbestic point of oxy-and deoxy-hemoglobin). Thus, our approach achieves precise data-driven vascular segmentation for automated vascular assessment and may boost MSOT further towards its clinical translation.
format Online
Article
Text
id pubmed-7644749
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-76447492020-11-13 A sparse deep learning approach for automatic segmentation of human vasculature in multispectral optoacoustic tomography Chlis, Nikolaos-Kosmas Karlas, Angelos Fasoula, Nikolina-Alexia Kallmayer, Michael Eckstein, Hans-Henning Theis, Fabian J. Ntziachristos, Vasilis Marr, Carsten Photoacoustics Research Article Multispectral Optoacoustic Tomography (MSOT) resolves oxy- (HbO(2)) and deoxy-hemoglobin (Hb) to perform vascular imaging. MSOT suffers from gradual signal attenuation with depth due to light-tissue interactions: an effect that hinders the precise manual segmentation of vessels. Furthermore, vascular assessment requires functional tests, which last several minutes and result in recording thousands of images. Here, we introduce a deep learning approach with a sparse-UNET (S-UNET) for automatic vascular segmentation in MSOT images to avoid the rigorous and time-consuming manual segmentation. We evaluated the S-UNET on a test-set of 33 images, achieving a median DICE score of 0.88. Apart from high segmentation performance, our method based its decision on two wavelengths with physical meaning for the task-at-hand: 850 nm (peak absorption of oxy-hemoglobin) and 810 nm (isosbestic point of oxy-and deoxy-hemoglobin). Thus, our approach achieves precise data-driven vascular segmentation for automated vascular assessment and may boost MSOT further towards its clinical translation. Elsevier 2020-09-10 /pmc/articles/PMC7644749/ /pubmed/33194545 http://dx.doi.org/10.1016/j.pacs.2020.100203 Text en © 2020 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Research Article
Chlis, Nikolaos-Kosmas
Karlas, Angelos
Fasoula, Nikolina-Alexia
Kallmayer, Michael
Eckstein, Hans-Henning
Theis, Fabian J.
Ntziachristos, Vasilis
Marr, Carsten
A sparse deep learning approach for automatic segmentation of human vasculature in multispectral optoacoustic tomography
title A sparse deep learning approach for automatic segmentation of human vasculature in multispectral optoacoustic tomography
title_full A sparse deep learning approach for automatic segmentation of human vasculature in multispectral optoacoustic tomography
title_fullStr A sparse deep learning approach for automatic segmentation of human vasculature in multispectral optoacoustic tomography
title_full_unstemmed A sparse deep learning approach for automatic segmentation of human vasculature in multispectral optoacoustic tomography
title_short A sparse deep learning approach for automatic segmentation of human vasculature in multispectral optoacoustic tomography
title_sort sparse deep learning approach for automatic segmentation of human vasculature in multispectral optoacoustic tomography
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7644749/
https://www.ncbi.nlm.nih.gov/pubmed/33194545
http://dx.doi.org/10.1016/j.pacs.2020.100203
work_keys_str_mv AT chlisnikolaoskosmas asparsedeeplearningapproachforautomaticsegmentationofhumanvasculatureinmultispectraloptoacoustictomography
AT karlasangelos asparsedeeplearningapproachforautomaticsegmentationofhumanvasculatureinmultispectraloptoacoustictomography
AT fasoulanikolinaalexia asparsedeeplearningapproachforautomaticsegmentationofhumanvasculatureinmultispectraloptoacoustictomography
AT kallmayermichael asparsedeeplearningapproachforautomaticsegmentationofhumanvasculatureinmultispectraloptoacoustictomography
AT ecksteinhanshenning asparsedeeplearningapproachforautomaticsegmentationofhumanvasculatureinmultispectraloptoacoustictomography
AT theisfabianj asparsedeeplearningapproachforautomaticsegmentationofhumanvasculatureinmultispectraloptoacoustictomography
AT ntziachristosvasilis asparsedeeplearningapproachforautomaticsegmentationofhumanvasculatureinmultispectraloptoacoustictomography
AT marrcarsten asparsedeeplearningapproachforautomaticsegmentationofhumanvasculatureinmultispectraloptoacoustictomography
AT chlisnikolaoskosmas sparsedeeplearningapproachforautomaticsegmentationofhumanvasculatureinmultispectraloptoacoustictomography
AT karlasangelos sparsedeeplearningapproachforautomaticsegmentationofhumanvasculatureinmultispectraloptoacoustictomography
AT fasoulanikolinaalexia sparsedeeplearningapproachforautomaticsegmentationofhumanvasculatureinmultispectraloptoacoustictomography
AT kallmayermichael sparsedeeplearningapproachforautomaticsegmentationofhumanvasculatureinmultispectraloptoacoustictomography
AT ecksteinhanshenning sparsedeeplearningapproachforautomaticsegmentationofhumanvasculatureinmultispectraloptoacoustictomography
AT theisfabianj sparsedeeplearningapproachforautomaticsegmentationofhumanvasculatureinmultispectraloptoacoustictomography
AT ntziachristosvasilis sparsedeeplearningapproachforautomaticsegmentationofhumanvasculatureinmultispectraloptoacoustictomography
AT marrcarsten sparsedeeplearningapproachforautomaticsegmentationofhumanvasculatureinmultispectraloptoacoustictomography